





Enterprise Computer Telephony Forum

S.100 Revision 1.0

Media Services "C" Language 

Application Programming Interfaces









�Copyright notice

©1996,  Enterprise Computer Telephony Forum ��This document is copyrighted and all rights are reserved by the Enterprise Computer Telephony Forum (ECTF().  This document cannot be reprinted by another company or organization  without prior consent.

DISCLAIMER

Interoperability Agreements are the result of a collaborative, volunteer effort of ECTF Members, their employees and others. ECTF shall at no time have any responsibility or liability whatsoever to ECTF Members or any other party for the accuracy, completeness, non-obsolescence or any other aspect of any Interoperability Agreement or any response by ECTF to any ECTF Member's or any other party's questions respecting any Interoperability Agreement.

�Overview of Contents

This document is a framework and application program interface (API) for developing client-server based computer telephony applications. It represents an interoperability agreement among application developers (since with this specification multiple application vendors could develop applications that would run in the same server environment) and among server developers (since a number of servers under current development but built to different internal architectures could support the same applications).

The technologies addressed include:

Client-server interaction

Vendor independent Player, Recorder, Signal Detector, Signal Generator, Automatic Speech Recognition, T.30 Fax, T.611 Fax, telephony network interfaces for computer telephony applications;

Multi-standard Telephony Service Providers (TSPs);

Support of application and resource concurrency and resource sharing;

Support of call routing at the system level.







Contents Note

The S.100 API Specification is offered as a Trial Use Implementation Agreement.  The ECTF encourages implementors to develop to this specification. Questions, technical comments, and other feedback may be sent to ectf-s.100@sbexpos.com.

A Trial Use interoperability agreement may be published when there is an urgent need for an agreement and time is of the essence.  Trial Use documents are never considered an end unto themselves but rather are an expedient step in the development of a permanent interoperability agreement. The ECTF shall review this specification periodically and issue revisions on a regular basis.



�

Table Of Contents

� TOC \o "1-3" “toc hd,1” \* MERGEFORMAT �1. S.100 Framework - Overview of Concepts	� GOTOBUTTON _Toc348239039  � PAGEREF _Toc348239039 �5��

1.1. Overview	� GOTOBUTTON _Toc348239042  � PAGEREF _Toc348239042 �5��

1.2. Motivating Example - Inbound Call Processing	� GOTOBUTTON _Toc348239043  � PAGEREF _Toc348239043 �5��

1.3. Sessions and Session/Event Management	� GOTOBUTTON _Toc348239044  � PAGEREF _Toc348239044 �6��

1.3.1. Multiple Clients and Multiple Servers	� GOTOBUTTON _Toc348239045  � PAGEREF _Toc348239045 �7��

1.3.2. Security	� GOTOBUTTON _Toc348239046  � PAGEREF _Toc348239046 �7��

1.3.3. Service Registration	� GOTOBUTTON _Toc348239047  � PAGEREF _Toc348239047 �7��

1.4. Groups and Resources	� GOTOBUTTON _Toc348239048  � PAGEREF _Toc348239048 �8��

1.4.1. Primary and Secondary Resources	� GOTOBUTTON _Toc348239049  � PAGEREF _Toc348239049 �8��

1.4.2. Group Management	� GOTOBUTTON _Toc348239050  � PAGEREF _Toc348239050 �9��

1.4.3. Group Configuration/Reconfiguration	� GOTOBUTTON _Toc348239051  � PAGEREF _Toc348239051 �9��

1.4.4. Inter-Group Connections	� GOTOBUTTON _Toc348239052  � PAGEREF _Toc348239052 �10��

1.5. Resource Allocation	� GOTOBUTTON _Toc348239053  � PAGEREF _Toc348239053 �11��

1.5.1. Static and Dynamic Resource Specification	� GOTOBUTTON _Toc348239054  � PAGEREF _Toc348239054 �11��

1.5.2. Implicit and Explicit Resource Specification	� GOTOBUTTON _Toc348239055  � PAGEREF _Toc348239055 �11��

1.6. Server and Resource Concurrency	� GOTOBUTTON _Toc348239056  � PAGEREF _Toc348239056 �12��

1.6.1. Inter-Application Resource Contention	� GOTOBUTTON _Toc348239057  � PAGEREF _Toc348239057 �12��

1.6.2. Intra-Application Resource Contention	� GOTOBUTTON _Toc348239058  � PAGEREF _Toc348239058 �12��

1.6.3. Primary Resource Access Contention	� GOTOBUTTON _Toc348239059  � PAGEREF _Toc348239059 �12��

1.7. Application Profile	� GOTOBUTTON _Toc348239060  � PAGEREF _Toc348239060 �13��

1.8. Runtime Control	� GOTOBUTTON _Toc348239061  � PAGEREF _Toc348239061 �14��

1.9. The S.100 Framework and Call Control	� GOTOBUTTON _Toc348239062  � PAGEREF _Toc348239062 �15��

1.9.1. Telephony Service Providers	� GOTOBUTTON _Toc348239063  � PAGEREF _Toc348239063 �15��

1.9.2. The System Call Router	� GOTOBUTTON _Toc348239064  � PAGEREF _Toc348239064 �16��

1.9.3. Inbound and Outbound Call Management	� GOTOBUTTON _Toc348239065  � PAGEREF _Toc348239065 �17��

1.10. Technology Resources	� GOTOBUTTON _Toc348239066  � PAGEREF _Toc348239066 �18��

1.11. Other S.100 Framework Services	� GOTOBUTTON _Toc348239067  � PAGEREF _Toc348239067 �18��

1.11.1. Container Management	� GOTOBUTTON _Toc348239068  � PAGEREF _Toc348239068 �18��

1.11.2. T.611 Fax System Service	� GOTOBUTTON _Toc348239069  � PAGEREF _Toc348239069 �19��

1.11.3. S.100 APIs	� GOTOBUTTON _Toc348239070  � PAGEREF _Toc348239070 �19��

1.12. S.100 Application Strategies	� GOTOBUTTON _Toc348239071  � PAGEREF _Toc348239071 �21��

1.12.1. Application Strategies for Resource Management	� GOTOBUTTON _Toc348239072  � PAGEREF _Toc348239072 �21��

1.12.2. System Call Router (SCR) vs. Direct Call Control	� GOTOBUTTON _Toc348239073  � PAGEREF _Toc348239073 �21��

1.12.3. Typical Group Configurations	� GOTOBUTTON _Toc348239074  � PAGEREF _Toc348239074 �21��

1.13. Summary	� GOTOBUTTON _Toc348239075  � PAGEREF _Toc348239075 �24��

2. S.100 C Language API Conventions	� GOTOBUTTON _Toc348239076  � PAGEREF _Toc348239076 �25��

2.1. Introduction	� GOTOBUTTON _Toc348239077  � PAGEREF _Toc348239077 �25��

2.2. S.100 Symbol Definition	� GOTOBUTTON _Toc348239078  � PAGEREF _Toc348239078 �25��

2.2.1. Names and Values of Symbols	� GOTOBUTTON _Toc348239079  � PAGEREF _Toc348239079 �25��

2.2.2. Extending the set of defined Symbols	� GOTOBUTTON _Toc348239080  � PAGEREF _Toc348239080 �26��

2.2.3. Standard Object and Vendor Names	� GOTOBUTTON _Toc348239081  � PAGEREF _Toc348239081 �27��

2.2.4. Structure of a Symbol	� GOTOBUTTON _Toc348239082  � PAGEREF _Toc348239082 �27��

2.3. S.100 C Language API Guidelines	� GOTOBUTTON _Toc348239083  � PAGEREF _Toc348239083 �28��

2.3.1. Naming Conventions	� GOTOBUTTON _Toc348239084  � PAGEREF _Toc348239084 �28��

2.3.2. Function Arguments	� GOTOBUTTON _Toc348239085  � PAGEREF _Toc348239085 �30��

2.3.3. Vendor Independence	� GOTOBUTTON _Toc348239086  � PAGEREF _Toc348239086 �32��

2.3.4. Programming Language Independence	� GOTOBUTTON _Toc348239087  � PAGEREF _Toc348239087 �32��

2.3.5. Data Location Independence	� GOTOBUTTON _Toc348239088  � PAGEREF _Toc348239088 �32��

2.3.6. Data Storage Management	� GOTOBUTTON _Toc348239089  � PAGEREF _Toc348239089 �33��

2.3.7. Function and Message Detail Nomenclature	� GOTOBUTTON _Toc348239090  � PAGEREF _Toc348239090 �33��

2.4. Guidelines for API Extensions	� GOTOBUTTON _Toc348239091  � PAGEREF _Toc348239091 �34��

3. S.100 Data Types	� GOTOBUTTON _Toc348239092  � PAGEREF _Toc348239092 �35��

3.1. Introduction	� GOTOBUTTON _Toc348239093  � PAGEREF _Toc348239093 �35��

3.2. Scalar Data Types	� GOTOBUTTON _Toc348239094  � PAGEREF _Toc348239094 �35��

3.3. Fixed-Length Structures	� GOTOBUTTON _Toc348239095  � PAGEREF _Toc348239095 �38��

3.4. Arrays and Strings	� GOTOBUTTON _Toc348239096  � PAGEREF _Toc348239096 �38��

3.5. Key Value Sets	� GOTOBUTTON _Toc348239097  � PAGEREF _Toc348239097 �40��

3.5.1. Function Summary	� GOTOBUTTON _Toc348239098  � PAGEREF _Toc348239098 �40��

3.5.2. Errors	� GOTOBUTTON _Toc348239099  � PAGEREF _Toc348239099 �42��

3.5.3. Miscellaneous Constants and Symbols	� GOTOBUTTON _Toc348239100  � PAGEREF _Toc348239100 �43��

3.5.4. KVSet Function Definitions	� GOTOBUTTON _Toc348239101  � PAGEREF _Toc348239101 �44��

4. Session and Event Management	� GOTOBUTTON _Toc348239102  � PAGEREF _Toc348239102 �66��

4.1. Introduction	� GOTOBUTTON _Toc348239103  � PAGEREF _Toc348239103 �66��

4.2. Function Summary	� GOTOBUTTON _Toc348239104  � PAGEREF _Toc348239104 �66��

4.2.1. Session Management Functions	� GOTOBUTTON _Toc348239105  � PAGEREF _Toc348239105 �66��

4.2.2. Event Management Functions	� GOTOBUTTON _Toc348239106  � PAGEREF _Toc348239106 �67��

4.2.3. Service Registry and OSU Functions	� GOTOBUTTON _Toc348239107  � PAGEREF _Toc348239107 �67��

4.2.4. CTtranInfo Helper Functions	� GOTOBUTTON _Toc348239108  � PAGEREF _Toc348239108 �68��

4.2.5. Session Creation and Destruction	� GOTOBUTTON _Toc348239109  � PAGEREF _Toc348239109 �68��

4.2.6. Sessions and Authentication	� GOTOBUTTON _Toc348239110  � PAGEREF _Toc348239110 �68��

4.2.7. Session Transactions	� GOTOBUTTON _Toc348239111  � PAGEREF _Toc348239111 �69��

4.2.8. Session Parameters	� GOTOBUTTON _Toc348239112  � PAGEREF _Toc348239112 �69��

4.3. Event Management Services	� GOTOBUTTON _Toc348239113  � PAGEREF _Toc348239113 �69��

4.3.1. Overview of Events	� GOTOBUTTON _Toc348239114  � PAGEREF _Toc348239114 �69��

4.3.2. Standard Event Attributes	� GOTOBUTTON _Toc348239115  � PAGEREF _Toc348239115 �70��

4.3.3. Event-Specific Information	� GOTOBUTTON _Toc348239116  � PAGEREF _Toc348239116 �71��

4.3.4. Event Documentation Convention	� GOTOBUTTON _Toc348239117  � PAGEREF _Toc348239117 �71��

4.3.5. Status values	� GOTOBUTTON _Toc348239118  � PAGEREF _Toc348239118 �72��

4.3.6. Basic Event Processing Overview	� GOTOBUTTON _Toc348239119  � PAGEREF _Toc348239119 �73��

4.3.7. Event Handlers	� GOTOBUTTON _Toc348239120  � PAGEREF _Toc348239120 �74��

4.3.8. CTtranInfo Struct	� GOTOBUTTON _Toc348239121  � PAGEREF _Toc348239121 �75��

4.4. Application Provided Services	� GOTOBUTTON _Toc348239122  � PAGEREF _Toc348239122 �76��

4.5. Object Status Update (OSU)	� GOTOBUTTON _Toc348239123  � PAGEREF _Toc348239123 �77��

4.6. Importing RTCs	� GOTOBUTTON _Toc348239124  � PAGEREF _Toc348239124 �78��

4.7. Definitions	� GOTOBUTTON _Toc348239125  � PAGEREF _Toc348239125 �78��

4.7.1. Session Parameters	� GOTOBUTTON _Toc348239126  � PAGEREF _Toc348239126 �78��

4.7.2. Session Errors	� GOTOBUTTON _Toc348239127  � PAGEREF _Toc348239127 �78��

4.7.3. Function Return Status Definitions	� GOTOBUTTON _Toc348239128  � PAGEREF _Toc348239128 �79��

4.7.4. Miscellaneous Constants	� GOTOBUTTON _Toc348239129  � PAGEREF _Toc348239129 �80��

4.8. Session Function Definitions	� GOTOBUTTON _Toc348239130  � PAGEREF _Toc348239130 �81��

5. Group Management	� GOTOBUTTON _Toc348239131  � PAGEREF _Toc348239131 �106��

5.1. Introduction	� GOTOBUTTON _Toc348239132  � PAGEREF _Toc348239132 �106��

5.2. Function Summary	� GOTOBUTTON _Toc348239133  � PAGEREF _Toc348239133 �106��

5.3. Overview	� GOTOBUTTON _Toc348239134  � PAGEREF _Toc348239134 �107��

5.3.1. Group Structure	� GOTOBUTTON _Toc348239135  � PAGEREF _Toc348239135 �107��

5.3.2. Group Configuration and Group Allocation	� GOTOBUTTON _Toc348239136  � PAGEREF _Toc348239136 �108��

5.3.3. Creating a Group	� GOTOBUTTON _Toc348239137  � PAGEREF _Toc348239137 �109��

5.3.4. Resource commands and APIs	� GOTOBUTTON _Toc348239138  � PAGEREF _Toc348239138 �109��

5.3.5. Other Group functions	� GOTOBUTTON _Toc348239139  � PAGEREF _Toc348239139 �109��

5.3.6. Groups and the Application Profiles	� GOTOBUTTON _Toc348239140  � PAGEREF _Toc348239140 �110��

5.3.7. Group Run Time Control	� GOTOBUTTON _Toc348239141  � PAGEREF _Toc348239141 �111��

5.3.8. Group Ownership and Handoff	� GOTOBUTTON _Toc348239142  � PAGEREF _Toc348239142 �112��

5.3.9. Groups and OSU	� GOTOBUTTON _Toc348239143  � PAGEREF _Toc348239143 �114��

5.4. Definitions	� GOTOBUTTON _Toc348239144  � PAGEREF _Toc348239144 �114��

5.4.1. Errors	� GOTOBUTTON _Toc348239145  � PAGEREF _Toc348239145 �114��

5.4.2. Group Parameters	� GOTOBUTTON _Toc348239146  � PAGEREF _Toc348239146 �115��

5.4.3. RTC Actions	� GOTOBUTTON _Toc348239147  � PAGEREF _Toc348239147 �115��

5.5. Unsolicited Group Events	� GOTOBUTTON _Toc348239148  � PAGEREF _Toc348239148 �115��

5.6. Constants	� GOTOBUTTON _Toc348239149  � PAGEREF _Toc348239149 �117��

5.7. Group Function Definitions	� GOTOBUTTON _Toc348239150  � PAGEREF _Toc348239150 �118��

6. System Call Router	� GOTOBUTTON _Toc348239151  � PAGEREF _Toc348239151 �146��

6.1. Introduction	� GOTOBUTTON _Toc348239152  � PAGEREF _Toc348239152 �146��

6.2. Program Interface Overview	� GOTOBUTTON _Toc348239153  � PAGEREF _Toc348239153 �146��

6.2.1. Functional Overview	� GOTOBUTTON _Toc348239154  � PAGEREF _Toc348239154 �146��

6.2.2. Inbound Call Handling	� GOTOBUTTON _Toc348239155  � PAGEREF _Toc348239155 �146��

6.2.3. Outbound Call Handling	� GOTOBUTTON _Toc348239156  � PAGEREF _Toc348239156 �147��

6.2.4. Call Transfer	� GOTOBUTTON _Toc348239157  � PAGEREF _Toc348239157 �148��

6.2.5. Handing off a Group	� GOTOBUTTON _Toc348239158  � PAGEREF _Toc348239158 �149��

6.3. Function Summary	� GOTOBUTTON _Toc348239159  � PAGEREF _Toc348239159 �149��

6.4. Type and Constant Definitions	� GOTOBUTTON _Toc348239160  � PAGEREF _Toc348239160 �150��

6.4.1. Error Codes	� GOTOBUTTON _Toc348239161  � PAGEREF _Toc348239161 �150��

6.4.2. Miscellaneous Constants	� GOTOBUTTON _Toc348239162  � PAGEREF _Toc348239162 �150��

6.5. Unsolicited Events	� GOTOBUTTON _Toc348239163  � PAGEREF _Toc348239163 �151��

6.6. SCR Function Definitions	� GOTOBUTTON _Toc348239164  � PAGEREF _Toc348239164 �152��

7.  Connection/Conferencing Management	� GOTOBUTTON _Toc348239165  � PAGEREF _Toc348239165 �163��

7.1. Introduction	� GOTOBUTTON _Toc348239166  � PAGEREF _Toc348239166 �163��

7.2. Function Summary	� GOTOBUTTON _Toc348239167  � PAGEREF _Toc348239167 �163��

7.2.1. Connecting and Monitoring Functions	� GOTOBUTTON _Toc348239168  � PAGEREF _Toc348239168 �163��

7.2.2. Conferencing Functions	� GOTOBUTTON _Toc348239169  � PAGEREF _Toc348239169 �163��

7.3. Object Overview	� GOTOBUTTON _Toc348239170  � PAGEREF _Toc348239170 �164��

7.3.1. Connections, Monitors, and Conferences	� GOTOBUTTON _Toc348239171  � PAGEREF _Toc348239171 �164��

7.3.2. Switch Port	� GOTOBUTTON _Toc348239172  � PAGEREF _Toc348239172 �164��

7.3.3. Monitor Connection	� GOTOBUTTON _Toc348239173  � PAGEREF _Toc348239173 �165��

7.3.4. Conference Bridges	� GOTOBUTTON _Toc348239174  � PAGEREF _Toc348239174 �165��

7.4. Functional Overview	� GOTOBUTTON _Toc348239175  � PAGEREF _Toc348239175 �165��

7.4.1. Making a Connection Between Two Groups	� GOTOBUTTON _Toc348239176  � PAGEREF _Toc348239176 �165��

7.4.2. Muting a Connection Between Two Groups	� GOTOBUTTON _Toc348239177  � PAGEREF _Toc348239177 �166��

7.4.3. Breaking a Connection Between Two Groups	� GOTOBUTTON _Toc348239178  � PAGEREF _Toc348239178 �166��

7.4.4. Monitoring a Connection Between Two Groups	� GOTOBUTTON _Toc348239179  � PAGEREF _Toc348239179 �166��

7.4.5. Conferencing Multiple Groups	� GOTOBUTTON _Toc348239180  � PAGEREF _Toc348239180 �167��

7.5. Unsolicited Events	� GOTOBUTTON _Toc348239181  � PAGEREF _Toc348239181 �167��

7.6. Definitions	� GOTOBUTTON _Toc348239182  � PAGEREF _Toc348239182 �168��

7.6.1. Parameters	� GOTOBUTTON _Toc348239183  � PAGEREF _Toc348239183 �168��

7.6.2. Errors	� GOTOBUTTON _Toc348239184  � PAGEREF _Toc348239184 �169��

7.6.3. Miscellaneous Constant Definitions	� GOTOBUTTON _Toc348239185  � PAGEREF _Toc348239185 �169��

7.7. Conferencing Function Definitions	� GOTOBUTTON _Toc348239186  � PAGEREF _Toc348239186 �171��

8. Container Management	� GOTOBUTTON _Toc348239187  � PAGEREF _Toc348239187 �189��

8.1. Introduction	� GOTOBUTTON _Toc348239188  � PAGEREF _Toc348239188 �189��

8.2. Function Summary	� GOTOBUTTON _Toc348239189  � PAGEREF _Toc348239189 �189��

8.3. Functional Overview	� GOTOBUTTON _Toc348239190  � PAGEREF _Toc348239190 �190��

8.4. Object Types	� GOTOBUTTON _Toc348239191  � PAGEREF _Toc348239191 �190��

8.4.1. File Objects	� GOTOBUTTON _Toc348239192  � PAGEREF _Toc348239192 �191��

8.4.2. Time Varying Media (TVM) Objects	� GOTOBUTTON _Toc348239193  � PAGEREF _Toc348239193 �191��

8.4.3. Spatial Media (SM) Objects	� GOTOBUTTON _Toc348239194  � PAGEREF _Toc348239194 �191��

8.5. Naming Conventions	� GOTOBUTTON _Toc348239195  � PAGEREF _Toc348239195 �191��

8.5.1. Container Names	� GOTOBUTTON _Toc348239196  � PAGEREF _Toc348239196 �191��

8.5.2. Data Object Names (Fully Qualified)	� GOTOBUTTON _Toc348239197  � PAGEREF _Toc348239197 �191��

8.5.3. Reserved Container Names	� GOTOBUTTON _Toc348239198  � PAGEREF _Toc348239198 �192��

8.6. Container Description	� GOTOBUTTON _Toc348239199  � PAGEREF _Toc348239199 �192��

8.6.1. Temporary Containers	� GOTOBUTTON _Toc348239200  � PAGEREF _Toc348239200 �192��

8.6.2. Reference Data Objects	� GOTOBUTTON _Toc348239201  � PAGEREF _Toc348239201 �192��

8.6.3. Accessing Native Client Files	� GOTOBUTTON _Toc348239202  � PAGEREF _Toc348239202 �192��

8.6.4. Backing up Containers and Objects	� GOTOBUTTON _Toc348239203  � PAGEREF _Toc348239203 �193��

8.7. Definitions	� GOTOBUTTON _Toc348239204  � PAGEREF _Toc348239204 �193��

8.7.1. Parameters	� GOTOBUTTON _Toc348239205  � PAGEREF _Toc348239205 �193��

8.7.2. Error Codes	� GOTOBUTTON _Toc348239206  � PAGEREF _Toc348239206 �194��

8.7.3. Miscellaneous Constant Definitions	� GOTOBUTTON _Toc348239207  � PAGEREF _Toc348239207 �194��

8.8. Unsolicited Events	� GOTOBUTTON _Toc348239208  � PAGEREF _Toc348239208 �194��

8.9. Container Function Definitions	� GOTOBUTTON _Toc348239209  � PAGEREF _Toc348239209 �195��

9. FAX System Services	� GOTOBUTTON _Toc348239210  � PAGEREF _Toc348239210 �216��

9.1. Introduction	� GOTOBUTTON _Toc348239211  � PAGEREF _Toc348239211 �216��

9.2. Function Summary	� GOTOBUTTON _Toc348239212  � PAGEREF _Toc348239212 �216��

9.3. Program Interface Overview	� GOTOBUTTON _Toc348239213  � PAGEREF _Toc348239213 �216��

9.3.1. Task Data Description (TDD)	� GOTOBUTTON _Toc348239214  � PAGEREF _Toc348239214 �217��

9.3.2. General API Function Descriptions	� GOTOBUTTON _Toc348239215  � PAGEREF _Toc348239215 �217��

9.3.3. Sample Sequence	� GOTOBUTTON _Toc348239216  � PAGEREF _Toc348239216 �218��

9.3.4. State Transition Diagrams	� GOTOBUTTON _Toc348239217  � PAGEREF _Toc348239217 �219��

9.3.5. S.100 Fax System Service Management	� GOTOBUTTON _Toc348239218  � PAGEREF _Toc348239218 �220��

9.3.6. S.100 FAX System Service API and T.611 Application	� GOTOBUTTON _Toc348239219  � PAGEREF _Toc348239219 �220��

9.4. Type and Constant Definitions	� GOTOBUTTON _Toc348239220  � PAGEREF _Toc348239220 �222��

9.4.1. Parameter Names, Ranges and Values	� GOTOBUTTON _Toc348239221  � PAGEREF _Toc348239221 �222��

9.4.2. Error Codes	� GOTOBUTTON _Toc348239222  � PAGEREF _Toc348239222 �223��

9.4.3. Concurrence Rules	� GOTOBUTTON _Toc348239223  � PAGEREF _Toc348239223 �224��

9.4.4. Function Messages	� GOTOBUTTON _Toc348239224  � PAGEREF _Toc348239224 �224��

9.5. Unsolicited  Events	� GOTOBUTTON _Toc348239225  � PAGEREF _Toc348239225 �224��

9.6. FAX Function Definitions	� GOTOBUTTON _Toc348239226  � PAGEREF _Toc348239226 �226��

10. FAX Resource	� GOTOBUTTON _Toc348239227  � PAGEREF _Toc348239227 �240��

10.1. Introduction	� GOTOBUTTON _Toc348239228  � PAGEREF _Toc348239228 �240��

10.2. Function Summary	� GOTOBUTTON _Toc348239229  � PAGEREF _Toc348239229 �240��

10.3. Program Interface Overview	� GOTOBUTTON _Toc348239230  � PAGEREF _Toc348239230 �241��

10.3.1.  Containers and Spatial Media	� GOTOBUTTON _Toc348239231  � PAGEREF _Toc348239231 �241��

10.3.2. High and Low Level FAX Functions	� GOTOBUTTON _Toc348239232  � PAGEREF _Toc348239232 �241��

10.3.3. Hierarchy of Parameters	� GOTOBUTTON _Toc348239233  � PAGEREF _Toc348239233 �242��

10.3.4. Interaction With Other Resources	� GOTOBUTTON _Toc348239234  � PAGEREF _Toc348239234 �242��

10.4. Resource Behavioral Overview	� GOTOBUTTON _Toc348239235  � PAGEREF _Toc348239235 �243��

10.4.1. Fax Sender	� GOTOBUTTON _Toc348239236  � PAGEREF _Toc348239236 �243��

10.4.2. High Level Fax Receiver	� GOTOBUTTON _Toc348239237  � PAGEREF _Toc348239237 �243��

10.4.3. Low Level Fax Operations	� GOTOBUTTON _Toc348239238  � PAGEREF _Toc348239238 �244��

10.5. Runtime Control	� GOTOBUTTON _Toc348239239  � PAGEREF _Toc348239239 �245��

10.5.1. Recognized Actions	� GOTOBUTTON _Toc348239240  � PAGEREF _Toc348239240 �245��

10.5.2. Recognized Conditions	� GOTOBUTTON _Toc348239241  � PAGEREF _Toc348239241 �245��

10.6. Concurrency Rules	� GOTOBUTTON _Toc348239242  � PAGEREF _Toc348239242 �246��

10.7. Type and Constant Definitions	� GOTOBUTTON _Toc348239243  � PAGEREF _Toc348239243 �246��

10.7.1. Parameter Names, Ranges and Values	� GOTOBUTTON _Toc348239244  � PAGEREF _Toc348239244 �246��

10.7.2. Page Parameters	� GOTOBUTTON _Toc348239245  � PAGEREF _Toc348239245 �254��

10.7.3. Error Code Definitions	� GOTOBUTTON _Toc348239246  � PAGEREF _Toc348239246 �255��

10.7.4. Spatial Media Object Definitions	� GOTOBUTTON _Toc348239247  � PAGEREF _Toc348239247 �255��

10.7.5. Fax Sender Events	� GOTOBUTTON _Toc348239248  � PAGEREF _Toc348239248 �260��

10.7.6. Fax Sender Event Qualifier Values	� GOTOBUTTON _Toc348239249  � PAGEREF _Toc348239249 �261��

10.7.7. Fax Sender Event Data Keys	� GOTOBUTTON _Toc348239250  � PAGEREF _Toc348239250 �261��

10.7.8. Fax Receiver Events	� GOTOBUTTON _Toc348239251  � PAGEREF _Toc348239251 �262��

10.7.9. Fax Receiver Event Qualifier Values	� GOTOBUTTON _Toc348239252  � PAGEREF _Toc348239252 �262��

10.7.10. Fax Receiver Data Values	� GOTOBUTTON _Toc348239253  � PAGEREF _Toc348239253 �263��

10.7.11. Low Level Fax Events	� GOTOBUTTON _Toc348239254  � PAGEREF _Toc348239254 �263��

10.7.12. Low Level Fax Event Qualifier Values	� GOTOBUTTON _Toc348239255  � PAGEREF _Toc348239255 �264��

10.7.13. Low Level Fax Event Data Keys	� GOTOBUTTON _Toc348239256  � PAGEREF _Toc348239256 �264��

10.8. Function Details	� GOTOBUTTON _Toc348239257  � PAGEREF _Toc348239257 �266��

10.8.1. High Level Functions	� GOTOBUTTON _Toc348239258  � PAGEREF _Toc348239258 �266��

10.8.2. Low Level Functions	� GOTOBUTTON _Toc348239259  � PAGEREF _Toc348239259 �272��

11. S.100 Call Channel Resource	� GOTOBUTTON _Toc348239260  � PAGEREF _Toc348239260 �286��

11.1. Introduction	� GOTOBUTTON _Toc348239261  � PAGEREF _Toc348239261 �286��

11.2. S.100 Telephony Model	� GOTOBUTTON _Toc348239262  � PAGEREF _Toc348239262 �286��

11.2.1. Call Control in the S.100 Server Environment	� GOTOBUTTON _Toc348239263  � PAGEREF _Toc348239263 �287��

11.2.2. Media (Data Stream) Control in the S.100 Server Environment	� GOTOBUTTON _Toc348239264  � PAGEREF _Toc348239264 �287��

11.3. Call Channel Resource Programming Model	� GOTOBUTTON _Toc348239265  � PAGEREF _Toc348239265 �287��

11.3.1. Getting Information about a Call Channel Resource	� GOTOBUTTON _Toc348239266  � PAGEREF _Toc348239266 �288��

11.4. Events	� GOTOBUTTON _Toc348239267  � PAGEREF _Toc348239267 �289��

11.4.1. Unsolicited Events	� GOTOBUTTON _Toc348239268  � PAGEREF _Toc348239268 �289��

11.5. Unsolicited Event Details	� GOTOBUTTON _Toc348239269  � PAGEREF _Toc348239269 �289��

11.6. Data Definitions	� GOTOBUTTON _Toc348239270  � PAGEREF _Toc348239270 �290��

11.6.1. Parameters	� GOTOBUTTON _Toc348239271  � PAGEREF _Toc348239271 �290��

11.7. Constants	� GOTOBUTTON _Toc348239272  � PAGEREF _Toc348239272 �292��

11.8. Runtime Control (RTC)	� GOTOBUTTON _Toc348239273  � PAGEREF _Toc348239273 �293��

11.8.1. Recognized Conditions	� GOTOBUTTON _Toc348239274  � PAGEREF _Toc348239274 �293��

12. Automatic Speech Recognition	� GOTOBUTTON _Toc348239275  � PAGEREF _Toc348239275 �294��

12.1. Introduction	� GOTOBUTTON _Toc348239276  � PAGEREF _Toc348239276 �294��

12.1.1. Limitations	� GOTOBUTTON _Toc348239277  � PAGEREF _Toc348239277 �294��

12.2. Configuration, Initialization, and Runtime	� GOTOBUTTON _Toc348239278  � PAGEREF _Toc348239278 �294��

12.2.1. Configuration Time Actions	� GOTOBUTTON _Toc348239279  � PAGEREF _Toc348239279 �295��

12.2.2. Initialization Time Actions	� GOTOBUTTON _Toc348239280  � PAGEREF _Toc348239280 �295��

12.2.3. Run Time Actions	� GOTOBUTTON _Toc348239281  � PAGEREF _Toc348239281 �295��

12.3. Function Summary	� GOTOBUTTON _Toc348239282  � PAGEREF _Toc348239282 �295��

12.3.1. Recognition Functions	� GOTOBUTTON _Toc348239283  � PAGEREF _Toc348239283 �295��

12.3.2. Word Functions	� GOTOBUTTON _Toc348239284  � PAGEREF _Toc348239284 �295��

12.3.3. Context Functions	� GOTOBUTTON _Toc348239285  � PAGEREF _Toc348239285 �296��

12.4. Program Interface Overview	� GOTOBUTTON _Toc348239286  � PAGEREF _Toc348239286 �296��

12.5. Functional Overview	� GOTOBUTTON _Toc348239287  � PAGEREF _Toc348239287 �297��

12.5.1. Recognition	� GOTOBUTTON _Toc348239288  � PAGEREF _Toc348239288 �297��

12.5.2. Contexts	� GOTOBUTTON _Toc348239289  � PAGEREF _Toc348239289 �297��

12.5.3. Context Support of Vocabularies	� GOTOBUTTON _Toc348239290  � PAGEREF _Toc348239290 �298��

12.5.4. Context Support of Grammars	� GOTOBUTTON _Toc348239291  � PAGEREF _Toc348239291 �298��

12.5.5. Grammar Specifications	� GOTOBUTTON _Toc348239292  � PAGEREF _Toc348239292 �298��

12.5.6. Contexts, Resources, and Containers	� GOTOBUTTON _Toc348239293  � PAGEREF _Toc348239293 �299��

12.5.7. Using Multiple Contexts	� GOTOBUTTON _Toc348239294  � PAGEREF _Toc348239294 �300��

12.5.8. Speaker Verification and Identification	� GOTOBUTTON _Toc348239295  � PAGEREF _Toc348239295 �300��

12.5.9. Unicode Support	� GOTOBUTTON _Toc348239296  � PAGEREF _Toc348239296 �300��

12.6. Resource Behavioral Overview	� GOTOBUTTON _Toc348239297  � PAGEREF _Toc348239297 �301��

12.6.1. Resource States	� GOTOBUTTON _Toc348239298  � PAGEREF _Toc348239298 �301��

12.6.2. Recognition States	� GOTOBUTTON _Toc348239299  � PAGEREF _Toc348239299 �301��

12.6.3. Audio Prompts	� GOTOBUTTON _Toc348239300  � PAGEREF _Toc348239300 �303��

12.6.4. Barge In	� GOTOBUTTON _Toc348239301  � PAGEREF _Toc348239301 �303��

12.7. Runtime Control	� GOTOBUTTON _Toc348239302  � PAGEREF _Toc348239302 �304��

12.7.1. Recognized Actions	� GOTOBUTTON _Toc348239303  � PAGEREF _Toc348239303 �304��

12.7.2. Recognized Conditions	� GOTOBUTTON _Toc348239304  � PAGEREF _Toc348239304 �304��

12.8. Parameters	� GOTOBUTTON _Toc348239305  � PAGEREF _Toc348239305 �305��

12.8.1. Introduction	� GOTOBUTTON _Toc348239306  � PAGEREF _Toc348239306 �305��

12.8.2. ASR Resource Parameter Categories	� GOTOBUTTON _Toc348239307  � PAGEREF _Toc348239307 �305��

12.9. Data Definitions	� GOTOBUTTON _Toc348239308  � PAGEREF _Toc348239308 �310��

12.9.1. Error Codes	� GOTOBUTTON _Toc348239309  � PAGEREF _Toc348239309 �310��

12.9.2. Miscellaneous Constants	� GOTOBUTTON _Toc348239310  � PAGEREF _Toc348239310 �311��

12.10. ASR Events	� GOTOBUTTON _Toc348239311  � PAGEREF _Toc348239311 �311��

12.10.1. Unsolicited ASR Events	� GOTOBUTTON _Toc348239312  � PAGEREF _Toc348239312 �312��

12.10.2. Completion Events	� GOTOBUTTON _Toc348239313  � PAGEREF _Toc348239313 �312��

12.10.3. Event Qualifier Values	� GOTOBUTTON _Toc348239314  � PAGEREF _Toc348239314 �313��

12.11. ASR Function Definitions	� GOTOBUTTON _Toc348239315  � PAGEREF _Toc348239315 �314��

13. Player/Recorder	� GOTOBUTTON _Toc348239316  � PAGEREF _Toc348239316 �338��

13.1. Introduction	� GOTOBUTTON _Toc348239317  � PAGEREF _Toc348239317 �338��

13.2. Function Summary	� GOTOBUTTON _Toc348239318  � PAGEREF _Toc348239318 �338��

13.3. Program Interface Overview	� GOTOBUTTON _Toc348239319  � PAGEREF _Toc348239319 �338��

13.4. Time Varying Media (TVM)	� GOTOBUTTON _Toc348239320  � PAGEREF _Toc348239320 �338��

13.5. Coder Types	� GOTOBUTTON _Toc348239321  � PAGEREF _Toc348239321 �339��

13.6. Players	� GOTOBUTTON _Toc348239322  � PAGEREF _Toc348239322 �339��

13.6.1. Player Description	� GOTOBUTTON _Toc348239323  � PAGEREF _Toc348239323 �340��

13.7. Recorders	� GOTOBUTTON _Toc348239324  � PAGEREF _Toc348239324 �340��

13.7.1. Recorder Description	� GOTOBUTTON _Toc348239325  � PAGEREF _Toc348239325 �340��

13.8. Runtime Control	� GOTOBUTTON _Toc348239326  � PAGEREF _Toc348239326 �341��

13.8.1. Recognized Actions	� GOTOBUTTON _Toc348239327  � PAGEREF _Toc348239327 �341��

13.8.2. Recognized Conditions	� GOTOBUTTON _Toc348239328  � PAGEREF _Toc348239328 �342��

13.9. Parameters	� GOTOBUTTON _Toc348239329  � PAGEREF _Toc348239329 �343��

13.9.1. Player Parameters	� GOTOBUTTON _Toc348239330  � PAGEREF _Toc348239330 �343��

13.9.2. Recorder Parameters	� GOTOBUTTON _Toc348239331  � PAGEREF _Toc348239331 �345��

13.10. Unsolicited Events	� GOTOBUTTON _Toc348239332  � PAGEREF _Toc348239332 �347��

13.10.1. Player Events	� GOTOBUTTON _Toc348239333  � PAGEREF _Toc348239333 �347��

13.10.2. Player Event Qualifier Values	� GOTOBUTTON _Toc348239334  � PAGEREF _Toc348239334 �349��

13.10.3. Recorder events	� GOTOBUTTON _Toc348239335  � PAGEREF _Toc348239335 �349��

13.10.4. Recorder Event Qualifier Values	� GOTOBUTTON _Toc348239336  � PAGEREF _Toc348239336 �350��

13.11. Definitions	� GOTOBUTTON _Toc348239337  � PAGEREF _Toc348239337 �351��

13.11.1. Error Codes	� GOTOBUTTON _Toc348239338  � PAGEREF _Toc348239338 �351��

13.11.2. Coder Types	� GOTOBUTTON _Toc348239339  � PAGEREF _Toc348239339 �351��

13.11.3. TVM Properties	� GOTOBUTTON _Toc348239340  � PAGEREF _Toc348239340 �352��

13.12.  Resource Attributes	� GOTOBUTTON _Toc348239341  � PAGEREF _Toc348239341 �353��

13.12.1. Player Attributes	� GOTOBUTTON _Toc348239342  � PAGEREF _Toc348239342 �353��

13.12.2. Recorder Attributes	� GOTOBUTTON _Toc348239343  � PAGEREF _Toc348239343 �354��

13.13. Player/Recorder Function Definitions	� GOTOBUTTON _Toc348239344  � PAGEREF _Toc348239344 �356��

14. Signal Detector	� GOTOBUTTON _Toc348239345  � PAGEREF _Toc348239345 �364��

14.1. Introduction	� GOTOBUTTON _Toc348239346  � PAGEREF _Toc348239346 �364��

14.2. Function Summary	� GOTOBUTTON _Toc348239347  � PAGEREF _Toc348239347 �364��

14.3. Program Interface Overview	� GOTOBUTTON _Toc348239348  � PAGEREF _Toc348239348 �364��

14.4. Resource Behavioral Description	� GOTOBUTTON _Toc348239349  � PAGEREF _Toc348239349 �365��

14.4.1. Signal Detector States	� GOTOBUTTON _Toc348239350  � PAGEREF _Toc348239350 �365��

14.4.2. Internal Buffer	� GOTOBUTTON _Toc348239351  � PAGEREF _Toc348239351 �365��

14.4.3. Signal Notification Methods	� GOTOBUTTON _Toc348239352  � PAGEREF _Toc348239352 �366��

14.4.4. Signal Filtering Methods	� GOTOBUTTON _Toc348239353  � PAGEREF _Toc348239353 �369��

14.5. Patterns	� GOTOBUTTON _Toc348239354  � PAGEREF _Toc348239354 �370��

14.6. Parameters	� GOTOBUTTON _Toc348239355  � PAGEREF _Toc348239355 �371��

14.7. Runtime Control	� GOTOBUTTON _Toc348239356  � PAGEREF _Toc348239356 �372��

14.7.1. Recognized Actions	� GOTOBUTTON _Toc348239357  � PAGEREF _Toc348239357 �372��

14.7.2. Recognized Conditions	� GOTOBUTTON _Toc348239358  � PAGEREF _Toc348239358 �372��

14.8. Unsolicited Events	� GOTOBUTTON _Toc348239359  � PAGEREF _Toc348239359 �373��

14.8.1. Event Qualifiers	� GOTOBUTTON _Toc348239360  � PAGEREF _Toc348239360 �373��

14.9. Definitions	� GOTOBUTTON _Toc348239361  � PAGEREF _Toc348239361 �374��

14.9.1. Error Codes	� GOTOBUTTON _Toc348239362  � PAGEREF _Toc348239362 �374��

14.9.2. Constants	� GOTOBUTTON _Toc348239363  � PAGEREF _Toc348239363 �374��

14.9.3. Standard Signal Templates	� GOTOBUTTON _Toc348239364  � PAGEREF _Toc348239364 �375��

14.10. Resource Attributes	� GOTOBUTTON _Toc348239365  � PAGEREF _Toc348239365 �375��

14.10.1. Signal Detector Attributes	� GOTOBUTTON _Toc348239366  � PAGEREF _Toc348239366 �375��

14.11. Signal Detector Function Definitions	� GOTOBUTTON _Toc348239367  � PAGEREF _Toc348239367 �376��

15. Signal Generator	� GOTOBUTTON _Toc348239368  � PAGEREF _Toc348239368 �379��

15.1. Introduction	� GOTOBUTTON _Toc348239369  � PAGEREF _Toc348239369 �379��

15.2. Function Summary	� GOTOBUTTON _Toc348239370  � PAGEREF _Toc348239370 �379��

15.3. Program Interface Overview	� GOTOBUTTON _Toc348239371  � PAGEREF _Toc348239371 �379��

15.4. Resource Behavioral Overview	� GOTOBUTTON _Toc348239372  � PAGEREF _Toc348239372 �379��

15.4.1. Description	� GOTOBUTTON _Toc348239373  � PAGEREF _Toc348239373 �379��

15.5. Runtime Control	� GOTOBUTTON _Toc348239374  � PAGEREF _Toc348239374 �379��

15.5.1. Recognized Actions	� GOTOBUTTON _Toc348239375  � PAGEREF _Toc348239375 �379��

15.5.2. Recognized Conditions	� GOTOBUTTON _Toc348239376  � PAGEREF _Toc348239376 �380��

15.5.3. Standard Signal Templates	� GOTOBUTTON _Toc348239377  � PAGEREF _Toc348239377 �380��

15.6. Unsolicited Events	� GOTOBUTTON _Toc348239378  � PAGEREF _Toc348239378 �380��

15.6.1. Event Qualifiers	� GOTOBUTTON _Toc348239379  � PAGEREF _Toc348239379 �380��

15.7. Parameters	� GOTOBUTTON _Toc348239380  � PAGEREF _Toc348239380 �381��

15.8. Resource Attributes	� GOTOBUTTON _Toc348239381  � PAGEREF _Toc348239381 �381��

15.8.1. Signal Generator Attributes	� GOTOBUTTON _Toc348239382  � PAGEREF _Toc348239382 �381��

15.9. Signal Generator Function Definitions	� GOTOBUTTON _Toc348239383  � PAGEREF _Toc348239383 �382��

Appendix A:  Application Profile Specification	� GOTOBUTTON _Toc348239384  � PAGEREF _Toc348239384 �384��

A.1 Application Profile Overview	� GOTOBUTTON _Toc348239385  � PAGEREF _Toc348239385 �384��

A.2 Algebra	� GOTOBUTTON _Toc348239386  � PAGEREF _Toc348239386 �384��

Terms	� GOTOBUTTON _Toc348239387  � PAGEREF _Toc348239387 �384��

Operators	� GOTOBUTTON _Toc348239388  � PAGEREF _Toc348239388 �385��

A.3 Application Profile Contents.	� GOTOBUTTON _Toc348239389  � PAGEREF _Toc348239389 �386��

A.3.1 Resource Block	� GOTOBUTTON _Toc348239390  � PAGEREF _Toc348239390 �387��

A.3.2 Configuration Block	� GOTOBUTTON _Toc348239391  � PAGEREF _Toc348239391 �387��

A.3.3 Group Set Block	� GOTOBUTTON _Toc348239392  � PAGEREF _Toc348239392 �388��

A.3.4 RTC Block	� GOTOBUTTON _Toc348239393  � PAGEREF _Toc348239393 �388��

A.3.5 Application Services Block	� GOTOBUTTON _Toc348239394  � PAGEREF _Toc348239394 �389��

A.4 Installation Instructions	� GOTOBUTTON _Toc348239395  � PAGEREF _Toc348239395 �389��

Appendix B: Glossary	� GOTOBUTTON _Toc348239396  � PAGEREF _Toc348239396 �390��

Appendix C: Contributions and Acknowledgements	� GOTOBUTTON _Toc348239397  � PAGEREF _Toc348239397 �397��

ECTF Contributions:	� GOTOBUTTON _Toc348239398  � PAGEREF _Toc348239398 �397��

Acknowledgements:	� GOTOBUTTON _Toc348239399  � PAGEREF _Toc348239399 �397��

Appendix D: Bibliography	� GOTOBUTTON _Toc348239400  � PAGEREF _Toc348239400 �398��

�

�List of Functions

� TOC \t "func syntax fn, 2"\* MERGEFORMAT \* MERGEFORMAT �CTkvs_Clear	� GOTOBUTTON _Toc348239774  � PAGEREF _Toc348239774 �44��

CTkvs_Copy	� GOTOBUTTON _Toc348239775  � PAGEREF _Toc348239775 �45��

CTkvs_Create	� GOTOBUTTON _Toc348239776  � PAGEREF _Toc348239776 �46��

CTkvs_Destroy	� GOTOBUTTON _Toc348239777  � PAGEREF _Toc348239777 �47��

CTkvs_Get[typ]	� GOTOBUTTON _Toc348239778  � PAGEREF _Toc348239778 �48��

CTkvs_Get[typ]Array	� GOTOBUTTON _Toc348239779  � PAGEREF _Toc348239779 �50��

CTkvs_GetNext	� GOTOBUTTON _Toc348239780  � PAGEREF _Toc348239780 �52��

CTkvs_GetString	� GOTOBUTTON _Toc348239781  � PAGEREF _Toc348239781 �54��

CTkvs_GetType	� GOTOBUTTON _Toc348239782  � PAGEREF _Toc348239782 �55��

CTkvs_Match	� GOTOBUTTON _Toc348239783  � PAGEREF _Toc348239783 �56��

CTkvs_Put[typ]	� GOTOBUTTON _Toc348239784  � PAGEREF _Toc348239784 �57��

CTkvs_Put[typ]Array	� GOTOBUTTON _Toc348239785  � PAGEREF _Toc348239785 �58��

CTkvs_PutString	� GOTOBUTTON _Toc348239786  � PAGEREF _Toc348239786 �60��

CTkvs_ReadFile	� GOTOBUTTON _Toc348239787  � PAGEREF _Toc348239787 �61��

CTkvs_Remove	� GOTOBUTTON _Toc348239788  � PAGEREF _Toc348239788 �62��

CTkvs_ObjectVendor	� GOTOBUTTON _Toc348239789  � PAGEREF _Toc348239789 �63��

CTkvs_NameString	� GOTOBUTTON _Toc348239790  � PAGEREF _Toc348239790 �64��

CTkvs_WriteFile	� GOTOBUTTON _Toc348239791  � PAGEREF _Toc348239791 �65��

CTses_Create	� GOTOBUTTON _Toc348239792  � PAGEREF _Toc348239792 �81��

CTses_CreateHandler	� GOTOBUTTON _Toc348239793  � PAGEREF _Toc348239793 �84��

CTses_Destroy	� GOTOBUTTON _Toc348239794  � PAGEREF _Toc348239794 �86��

CTses_DestroyHandler	� GOTOBUTTON _Toc348239795  � PAGEREF _Toc348239795 �88��

CTses_FindService	� GOTOBUTTON _Toc348239796  � PAGEREF _Toc348239796 �89��

CTses_GetParameters	� GOTOBUTTON _Toc348239797  � PAGEREF _Toc348239797 �91��

CTses_ImportRTC	� GOTOBUTTON _Toc348239798  � PAGEREF _Toc348239798 �93��

CTses_OSU	� GOTOBUTTON _Toc348239799  � PAGEREF _Toc348239799 �94��

CTses_PutEvent	� GOTOBUTTON _Toc348239800  � PAGEREF _Toc348239800 �96��

CTses_RegisterService	� GOTOBUTTON _Toc348239801  � PAGEREF _Toc348239801 �97��

CTses_ReleaseService	� GOTOBUTTON _Toc348239802  � PAGEREF _Toc348239802 �98��

CTses_SendMessage	� GOTOBUTTON _Toc348239803  � PAGEREF _Toc348239803 �99��

CTses_SetParameters	� GOTOBUTTON _Toc348239804  � PAGEREF _Toc348239804 �100��

CTses_Stop	� GOTOBUTTON _Toc348239805  � PAGEREF _Toc348239805 �101��

CTses_UnRegisterService	� GOTOBUTTON _Toc348239806  � PAGEREF _Toc348239806 �103��

CTses_WaitEvent	� GOTOBUTTON _Toc348239807  � PAGEREF _Toc348239807 �104��

CTtrn_Initialize	� GOTOBUTTON _Toc348239808  � PAGEREF _Toc348239808 �105��

CTgrp_Allocate	� GOTOBUTTON _Toc348239809  � PAGEREF _Toc348239809 �118��

CTgrp_Configure	� GOTOBUTTON _Toc348239810  � PAGEREF _Toc348239810 �120��

CTgrp_Create	� GOTOBUTTON _Toc348239811  � PAGEREF _Toc348239811 �122��

CTgrp_Deallocate	� GOTOBUTTON _Toc348239812  � PAGEREF _Toc348239812 �124��

CTgrp_Destroy	� GOTOBUTTON _Toc348239813  � PAGEREF _Toc348239813 �125��

CTgrp_GetParameterRange	� GOTOBUTTON _Toc348239814  � PAGEREF _Toc348239814 �126��

CTgrp_GetParameterNames	� GOTOBUTTON _Toc348239815  � PAGEREF _Toc348239815 �128��

CTgrp_GetGroupInfo	� GOTOBUTTON _Toc348239816  � PAGEREF _Toc348239816 �130��

CTgrp_GetParameters	� GOTOBUTTON _Toc348239817  � PAGEREF _Toc348239817 �131��

CTgrp_GetRTC	� GOTOBUTTON _Toc348239818  � PAGEREF _Toc348239818 �132��

CTgrp_HandOff	� GOTOBUTTON _Toc348239819  � PAGEREF _Toc348239819 �133��

CTgrp_PutGroupInfo	� GOTOBUTTON _Toc348239820  � PAGEREF _Toc348239820 �135��

CTgrp_Retrieve	� GOTOBUTTON _Toc348239821  � PAGEREF _Toc348239821 �136��

CTgrp_Return	� GOTOBUTTON _Toc348239822  � PAGEREF _Toc348239822 �138��

CTgrp_SetParameters	� GOTOBUTTON _Toc348239823  � PAGEREF _Toc348239823 �140��

CTgrp_SetRTC	� GOTOBUTTON _Toc348239824  � PAGEREF _Toc348239824 �141��

CTgrp_Stop	� GOTOBUTTON _Toc348239825  � PAGEREF _Toc348239825 �143��

CTgrp_WaitGroup	� GOTOBUTTON _Toc348239826  � PAGEREF _Toc348239826 �144��

CTscr_AnswerCall	� GOTOBUTTON _Toc348239827  � PAGEREF _Toc348239827 �152��

CTscr_DropCall	� GOTOBUTTON _Toc348239828  � PAGEREF _Toc348239828 �153��

CTscr_MakeConsultationCall	� GOTOBUTTON _Toc348239829  � PAGEREF _Toc348239829 �154��

CTscr_MakeCall	� GOTOBUTTON _Toc348239830  � PAGEREF _Toc348239830 �155��

CTscr_RequestGroup	� GOTOBUTTON _Toc348239831  � PAGEREF _Toc348239831 �158��

CTscr_SendMessage	� GOTOBUTTON _Toc348239832  � PAGEREF _Toc348239832 �160��

CTscr_TransferCall	� GOTOBUTTON _Toc348239833  � PAGEREF _Toc348239833 �161��

CTconf_Create	� GOTOBUTTON _Toc348239834  � PAGEREF _Toc348239834 �171��

CTconf_Destroy	� GOTOBUTTON _Toc348239835  � PAGEREF _Toc348239835 �173��

CTconf_GetParameters	� GOTOBUTTON _Toc348239836  � PAGEREF _Toc348239836 �175��

CTconf_SetParameters	� GOTOBUTTON _Toc348239837  � PAGEREF _Toc348239837 �177��

CTconn_Break	� GOTOBUTTON _Toc348239838  � PAGEREF _Toc348239838 �178��

CTconn_Create	� GOTOBUTTON _Toc348239839  � PAGEREF _Toc348239839 �180��

CTconn_Destroy	� GOTOBUTTON _Toc348239840  � PAGEREF _Toc348239840 �183��

CTconn_GetParameters	� GOTOBUTTON _Toc348239841  � PAGEREF _Toc348239841 �184��

CTconn_Make	� GOTOBUTTON _Toc348239842  � PAGEREF _Toc348239842 �186��

CTconn_SetParameters	� GOTOBUTTON _Toc348239843  � PAGEREF _Toc348239843 �188��

CTcont_ChangeMode	� GOTOBUTTON _Toc348239844  � PAGEREF _Toc348239844 �195��

CTcont_CloseObject	� GOTOBUTTON _Toc348239845  � PAGEREF _Toc348239845 �197��

CTcont_Copy	� GOTOBUTTON _Toc348239846  � PAGEREF _Toc348239846 �198��

CTcont_Create	� GOTOBUTTON _Toc348239847  � PAGEREF _Toc348239847 �200��

CTcont_Destroy	� GOTOBUTTON _Toc348239848  � PAGEREF _Toc348239848 �201��

CTcont_GetObjectList	� GOTOBUTTON _Toc348239849  � PAGEREF _Toc348239849 �203��

CTcont_GetParameters	� GOTOBUTTON _Toc348239850  � PAGEREF _Toc348239850 �204��

CTcont_OpenObject	� GOTOBUTTON _Toc348239851  � PAGEREF _Toc348239851 �206��

CTcont_ReadContents	� GOTOBUTTON _Toc348239852  � PAGEREF _Toc348239852 �208��

CTcont_Seek	� GOTOBUTTON _Toc348239853  � PAGEREF _Toc348239853 �209��

CTcont_Rename	� GOTOBUTTON _Toc348239854  � PAGEREF _Toc348239854 �211��

CTcont_SetParameters	� GOTOBUTTON _Toc348239855  � PAGEREF _Toc348239855 �213��

CTcont_WriteContents	� GOTOBUTTON _Toc348239856  � PAGEREF _Toc348239856 �214��

CTfax_AbortData	� GOTOBUTTON _Toc348239857  � PAGEREF _Toc348239857 �226��

CTfax_Close	� GOTOBUTTON _Toc348239858  � PAGEREF _Toc348239858 �227��

CTfax_GetData	� GOTOBUTTON _Toc348239859  � PAGEREF _Toc348239859 �228��

CTfax_GetParameters	� GOTOBUTTON _Toc348239860  � PAGEREF _Toc348239860 �229��

CTfax_GetTDD	� GOTOBUTTON _Toc348239861  � PAGEREF _Toc348239861 �231��

CTfax_Open	� GOTOBUTTON _Toc348239862  � PAGEREF _Toc348239862 �233��

CTfax_PutData	� GOTOBUTTON _Toc348239863  � PAGEREF _Toc348239863 �234��

CTfax_PutTDD	� GOTOBUTTON _Toc348239864  � PAGEREF _Toc348239864 �235��

CTfax_SetAlarm	� GOTOBUTTON _Toc348239865  � PAGEREF _Toc348239865 �237��

CTfax_SetParameters	� GOTOBUTTON _Toc348239866  � PAGEREF _Toc348239866 �239��

CTfaxhl_Receive	� GOTOBUTTON _Toc348239867  � PAGEREF _Toc348239867 �266��

CTfaxhl_Send	� GOTOBUTTON _Toc348239868  � PAGEREF _Toc348239868 �268��

CTfaxhl_Stop	� GOTOBUTTON _Toc348239869  � PAGEREF _Toc348239869 �270��

CTfaxll_BeginNegotiate	� GOTOBUTTON _Toc348239870  � PAGEREF _Toc348239870 �272��

CTfaxll_End	� GOTOBUTTON _Toc348239871  � PAGEREF _Toc348239871 �274��

CTfaxll_ForceNegotiate	� GOTOBUTTON _Toc348239872  � PAGEREF _Toc348239872 �276��

CTfaxll_Init	� GOTOBUTTON _Toc348239873  � PAGEREF _Toc348239873 �278��

CTfaxll_ReceivePages	� GOTOBUTTON _Toc348239874  � PAGEREF _Toc348239874 �280��

CTfaxll_SendPage	� GOTOBUTTON _Toc348239875  � PAGEREF _Toc348239875 �282��

CTfaxll_Stop	� GOTOBUTTON _Toc348239876  � PAGEREF _Toc348239876 �284��

CTasr_ContextCopy	� GOTOBUTTON _Toc348239877  � PAGEREF _Toc348239877 �314��

CTasr_ContextCreate	� GOTOBUTTON _Toc348239878  � PAGEREF _Toc348239878 �316��

CTasr_ContextList	� GOTOBUTTON _Toc348239879  � PAGEREF _Toc348239879 �318��

CTasr_ContextRemove	� GOTOBUTTON _Toc348239880  � PAGEREF _Toc348239880 �320��

CTasr_RetrieveRecognition	� GOTOBUTTON _Toc348239881  � PAGEREF _Toc348239881 �321��

CTasr_StartRecognition	� GOTOBUTTON _Toc348239882  � PAGEREF _Toc348239882 �324��

CTasr_WordCommit	� GOTOBUTTON _Toc348239883  � PAGEREF _Toc348239883 �326��

CTasr_WordCreate	� GOTOBUTTON _Toc348239884  � PAGEREF _Toc348239884 �328��

CTasr_WordDeleteLastUtterance	� GOTOBUTTON _Toc348239885  � PAGEREF _Toc348239885 �330��

CTasr_WordDeleteTraining	� GOTOBUTTON _Toc348239886  � PAGEREF _Toc348239886 �332��

CTasr_WordDestroy	� GOTOBUTTON _Toc348239887  � PAGEREF _Toc348239887 �334��

CTasr_WordTrain	� GOTOBUTTON _Toc348239888  � PAGEREF _Toc348239888 �335��

CTplyr_Play	� GOTOBUTTON _Toc348239889  � PAGEREF _Toc348239889 �356��

CTplyr_AdjustSpeed	� GOTOBUTTON _Toc348239890  � PAGEREF _Toc348239890 �358��

CTplyr_AdjustVolume	� GOTOBUTTON _Toc348239891  � PAGEREF _Toc348239891 �360��

CTrcdr_Record	� GOTOBUTTON _Toc348239892  � PAGEREF _Toc348239892 �362��

CTsd_FlushBuffer	� GOTOBUTTON _Toc348239893  � PAGEREF _Toc348239893 �376��

CTsd_RetrieveSignals	� GOTOBUTTON _Toc348239894  � PAGEREF _Toc348239894 �377��

CTsg_SendSignals	� GOTOBUTTON _Toc348239895  � PAGEREF _Toc348239895 �382��

��List of Figures

� TOC \c "Figure" * MERGEFORMAT \* MERGEFORMAT �Figure 1:  Example of a Group	� GOTOBUTTON _Toc348239896  � PAGEREF _Toc348239896 �9��

Figure 2:  Example of a Connection	� GOTOBUTTON _Toc348239897  � PAGEREF _Toc348239897 �10��

Figure 3:  Typical Group Configuration	� GOTOBUTTON _Toc348239898  � PAGEREF _Toc348239898 �22��

Figure 4:  Drop and Insert Configuration	� GOTOBUTTON _Toc348239899  � PAGEREF _Toc348239899 �22��

Figure 5:  Resource Sharing Configuration	� GOTOBUTTON _Toc348239900  � PAGEREF _Toc348239900 �23��

Figure 6:  Conference Call Configuration	� GOTOBUTTON _Toc348239901  � PAGEREF _Toc348239901 �24��

Figure 7:  CTtranInfo Struct Definition	� GOTOBUTTON _Toc348239902  � PAGEREF _Toc348239902 �76��

Figure 8:  Use of CTtranInfo structure	� GOTOBUTTON _Toc348239903  � PAGEREF _Toc348239903 �76��

Figure 9:  Illustration of Group structure	� GOTOBUTTON _Toc348239904  � PAGEREF _Toc348239904 �108��

Figure 10:  Group Handoff	� GOTOBUTTON _Toc348239905  � PAGEREF _Toc348239905 �112��

Figure 11:  Group Connection	� GOTOBUTTON _Toc348239906  � PAGEREF _Toc348239906 �165��

Figure 12:  Basic Exchange Method	� GOTOBUTTON _Toc348239907  � PAGEREF _Toc348239907 �218��

Figure 13:  State transitions of the FAX Service during reception	� GOTOBUTTON _Toc348239908  � PAGEREF _Toc348239908 �219��

Figure 14:  State transitions of the FAX Service during transmission	� GOTOBUTTON _Toc348239909  � PAGEREF _Toc348239909 �220��

Figure 15:  Fax Sender state diagram	� GOTOBUTTON _Toc348239910  � PAGEREF _Toc348239910 �243��

Figure 16:  Fax Receiver state diagram	� GOTOBUTTON _Toc348239911  � PAGEREF _Toc348239911 �243��

Figure 17:  Low Level Fax state diagram	� GOTOBUTTON _Toc348239912  � PAGEREF _Toc348239912 �244��

Figure 18: Hierarchy of FAX Resource Events	� GOTOBUTTON _Toc348239913  � PAGEREF _Toc348239913 �260��

Figure 19:  S.100 Server Environment	� GOTOBUTTON _Toc348239914  � PAGEREF _Toc348239914 �287��

Figure 20:  Speech Recognizer state diagram	� GOTOBUTTON _Toc348239915  � PAGEREF _Toc348239915 �301��

Figure 21:  Training state diagram	� GOTOBUTTON _Toc348239916  � PAGEREF _Toc348239916 �302��

Figure 22:  Player state diagram	� GOTOBUTTON _Toc348239917  � PAGEREF _Toc348239917 �340��

Figure 23:  Recorder state diagram	� GOTOBUTTON _Toc348239918  � PAGEREF _Toc348239918 �340��

Figure 24:  Signal Detector state diagram	� GOTOBUTTON _Toc348239919  � PAGEREF _Toc348239919 �365��

��List of Tables

� TOC \c "Table" �Table 1:  S.100 API Categories	� GOTOBUTTON _Toc348239920  � PAGEREF _Toc348239920 �19��

Table 2:  API-Supported Functionality	� GOTOBUTTON _Toc348239921  � PAGEREF _Toc348239921 �20��

Table 3:  Future S.100 APIs	� GOTOBUTTON _Toc348239922  � PAGEREF _Toc348239922 �20��

Table 4:  CTsymbol Object Names	� GOTOBUTTON _Toc348239923  � PAGEREF _Toc348239923 �27��

Table 5:  CTsymbol Vendor Names	� GOTOBUTTON _Toc348239924  � PAGEREF _Toc348239924 �27��

Table 6:  Units used in S.100 Quantities	� GOTOBUTTON _Toc348239925  � PAGEREF _Toc348239925 �32��

Table 7:  S.100 Scalar Data Types	� GOTOBUTTON _Toc348239926  � PAGEREF _Toc348239926 �36��

Table 8:  Values of CTstatus type	� GOTOBUTTON _Toc348239927  � PAGEREF _Toc348239927 �37��

Table 9:  Fixed-Length Structure Types	� GOTOBUTTON _Toc348239928  � PAGEREF _Toc348239928 �38��

Table 10:  S.100 Variable-Length Array Data Types	� GOTOBUTTON _Toc348239929  � PAGEREF _Toc348239929 �39��

Table 11:  Summary of KVSet Functions	� GOTOBUTTON _Toc348239930  � PAGEREF _Toc348239930 �40��

Table 12:  KVSet Accessor Functions	� GOTOBUTTON _Toc348239931  � PAGEREF _Toc348239931 �41��

Table 13:  KVSet Error Codes	� GOTOBUTTON _Toc348239932  � PAGEREF _Toc348239932 �42��

Table 14:  Miscellaneous KVSet Constants	� GOTOBUTTON _Toc348239933  � PAGEREF _Toc348239933 �43��

Table 15:  Summary of Session Management Functions	� GOTOBUTTON _Toc348239934  � PAGEREF _Toc348239934 �67��

Table 16:  Summary of Event Management Functions	� GOTOBUTTON _Toc348239935  � PAGEREF _Toc348239935 �67��

Table 17:  Summary of Service Registry/OSU Functions	� GOTOBUTTON _Toc348239936  � PAGEREF _Toc348239936 �67��

Table 18:  CTtranInfo Helper Functions	� GOTOBUTTON _Toc348239937  � PAGEREF _Toc348239937 �68��

Table 19:  Standard Event KVPairs	� GOTOBUTTON _Toc348239938  � PAGEREF _Toc348239938 �70��

Table 20:  Session Parameters	� GOTOBUTTON _Toc348239939  � PAGEREF _Toc348239939 �78��

Table 21: Session Error Codes	� GOTOBUTTON _Toc348239940  � PAGEREF _Toc348239940 �78��

Table 22: Session Functional Return Values	� GOTOBUTTON _Toc348239941  � PAGEREF _Toc348239941 �79��

Table 23: Session Miscellaneous Constants	� GOTOBUTTON _Toc348239942  � PAGEREF _Toc348239942 �80��

Table 24: S.100 Error Codes	� GOTOBUTTON _Toc348239943  � PAGEREF _Toc348239943 �114��

Table 25: Group Management Parameters	� GOTOBUTTON _Toc348239944  � PAGEREF _Toc348239944 �115��

Table 26: Group Management Runtime Control Actions	� GOTOBUTTON _Toc348239945  � PAGEREF _Toc348239945 �115��

Table 27: Group Management Constants	� GOTOBUTTON _Toc348239946  � PAGEREF _Toc348239946 �117��

Table 28: SCR Error Codes	� GOTOBUTTON _Toc348239947  � PAGEREF _Toc348239947 �150��

Table 29: SCR Constants	� GOTOBUTTON _Toc348239948  � PAGEREF _Toc348239948 �150��

Table 30: Connection/Conferencing Parameters	� GOTOBUTTON _Toc348239949  � PAGEREF _Toc348239949 �168��

Table 31: Connection/Conferencing Errors	� GOTOBUTTON _Toc348239950  � PAGEREF _Toc348239950 �169��

Table 32: Connection/Conferencing Constants	� GOTOBUTTON _Toc348239951  � PAGEREF _Toc348239951 �169��

Table 33: Container Parameters	� GOTOBUTTON _Toc348239952  � PAGEREF _Toc348239952 �193��

Table 34: Container Error Codes	� GOTOBUTTON _Toc348239953  � PAGEREF _Toc348239953 �194��

Table 35: Container Miscellaneous Constants	� GOTOBUTTON _Toc348239954  � PAGEREF _Toc348239954 �194��

Table 36: Task Data Descriptor (TDD) Groups	� GOTOBUTTON _Toc348239955  � PAGEREF _Toc348239955 �217��

Table 37: T.611/S.100 Fax System Service Equivalent Terms	� GOTOBUTTON _Toc348239956  � PAGEREF _Toc348239956 �221��

Table 38:  General T.611 Parameters	� GOTOBUTTON _Toc348239957  � PAGEREF _Toc348239957 �222��

Table 39:  Exchange Method Parameters:	� GOTOBUTTON _Toc348239958  � PAGEREF _Toc348239958 �223��

Table 40:  Service Parameters:	� GOTOBUTTON _Toc348239959  � PAGEREF _Toc348239959 �223��

Table 41:  Fax Specific Parameters:	� GOTOBUTTON _Toc348239960  � PAGEREF _Toc348239960 �223��

Table 42: Fax System Service Error Codes	� GOTOBUTTON _Toc348239961  � PAGEREF _Toc348239961 �223��

Table 43:  Alarm Values	� GOTOBUTTON _Toc348239962  � PAGEREF _Toc348239962 �224��

Table 44:  Task Data Descriptor (TDD) Types and Subtypes	� GOTOBUTTON _Toc348239963  � PAGEREF _Toc348239963 �235��

Table 45:  Fax Sender Runtime Control Actions	� GOTOBUTTON _Toc348239964  � PAGEREF _Toc348239964 �245��

Table 46:  Fax Receiver Runtime Control Actions	� GOTOBUTTON _Toc348239965  � PAGEREF _Toc348239965 �245��

Table 47:  Fax Sender Runtime Control Conditions	� GOTOBUTTON _Toc348239966  � PAGEREF _Toc348239966 �246��

Table 48:  Fax Receiver Runtime Control Conditions	� GOTOBUTTON _Toc348239967  � PAGEREF _Toc348239967 �246��

Table 49:  Fax Resource Concurrency Rules	� GOTOBUTTON _Toc348239968  � PAGEREF _Toc348239968 �246��

Table 50:  Fax Resource Replaceable Parameter Codes	� GOTOBUTTON _Toc348239969  � PAGEREF _Toc348239969 �248��

Table 51:  FAX Sender Group Parameters	� GOTOBUTTON _Toc348239970  � PAGEREF _Toc348239970 �249��

Table 52:  FAX Sender Procedure Parameters	� GOTOBUTTON _Toc348239971  � PAGEREF _Toc348239971 �250��

Table 53:  FAX Receiver Group Parameters	� GOTOBUTTON _Toc348239972  � PAGEREF _Toc348239972 �251��

Table 54:  FAX Receiver Procedure Parameters	� GOTOBUTTON _Toc348239973  � PAGEREF _Toc348239973 �252��

Table 55:  Low Level FAX Resource Group Parameters	� GOTOBUTTON _Toc348239974  � PAGEREF _Toc348239974 �253��

Table 56:  Low Level FAX Procedure Parameters	� GOTOBUTTON _Toc348239975  � PAGEREF _Toc348239975 �254��

Table 57:  Low Level FAX Page Parameters	� GOTOBUTTON _Toc348239976  � PAGEREF _Toc348239976 �255��

Table 58:  Fax Resource Error Codes	� GOTOBUTTON _Toc348239977  � PAGEREF _Toc348239977 �255��

Table 59:  Supported Spatial Media	� GOTOBUTTON _Toc348239978  � PAGEREF _Toc348239978 �255��

Table 60:  Fax Resource Spatial Media Properties	� GOTOBUTTON _Toc348239979  � PAGEREF _Toc348239979 �256��

Table 61:  Fax Resource Spatial Media Properties (with ASCII data content)	� GOTOBUTTON _Toc348239980  � PAGEREF _Toc348239980 �256��

Table 62:  TIFF Reader Tags	� GOTOBUTTON _Toc348239981  � PAGEREF _Toc348239981 �257��

Table 63:  TIFF Reader Tags with G4 Compression	� GOTOBUTTON _Toc348239982  � PAGEREF _Toc348239982 �258��

Table 64:  TIFF Writer Tags	� GOTOBUTTON _Toc348239983  � PAGEREF _Toc348239983 �258��

Table 65:  Optional TIFF Writer Tags	� GOTOBUTTON _Toc348239984  � PAGEREF _Toc348239984 �258��

Table 66:  TIFF Writer Tags with G4 Compression	� GOTOBUTTON _Toc348239985  � PAGEREF _Toc348239985 �259��

Table 67:  Fax Sender Event Data Keys	� GOTOBUTTON _Toc348239986  � PAGEREF _Toc348239986 �261��

Table 68:  Fax Sender Event Data Keys (NegNotify event)	� GOTOBUTTON _Toc348239987  � PAGEREF _Toc348239987 �261��

Table 69:  Fax Receiver Event Qualifier Values	� GOTOBUTTON _Toc348239988  � PAGEREF _Toc348239988 �262��

Table 70:  Fax Receiver Event Data Values	� GOTOBUTTON _Toc348239989  � PAGEREF _Toc348239989 �263��

Table 71:  Fax Receiver Event Data Values (NegNotify event)	� GOTOBUTTON _Toc348239990  � PAGEREF _Toc348239990 �263��

Table 72:  Low Level Fax Event Qualifier Values	� GOTOBUTTON _Toc348239991  � PAGEREF _Toc348239991 �264��

Table 73:  Low Level Fax Event Data Keys	� GOTOBUTTON _Toc348239992  � PAGEREF _Toc348239992 �264��

Table 74:  Low Level Fax Event Data Keys (NegNotify event)	� GOTOBUTTON _Toc348239993  � PAGEREF _Toc348239993 �264��

Table 75:  Call Channel Resource Unsolicited Events	� GOTOBUTTON _Toc348239994  � PAGEREF _Toc348239994 �289��

Table 76:  Call Channel Resource Event Data	� GOTOBUTTON _Toc348239995  � PAGEREF _Toc348239995 �290��

Table 77:  Call Channel Resource Parameters	� GOTOBUTTON _Toc348239996  � PAGEREF _Toc348239996 �291��

Table 78:  Call Control Provider Type Constants	� GOTOBUTTON _Toc348239997  � PAGEREF _Toc348239997 �292��

Table 79:  Call Channel Resource State Constants	� GOTOBUTTON _Toc348239998  � PAGEREF _Toc348239998 �293��

Table 80:  Call Channel Resource Runtime Conditions	� GOTOBUTTON _Toc348239999  � PAGEREF _Toc348239999 �293��

Table 81:  ASR Resource Runtime Control Actions	� GOTOBUTTON _Toc348240000  � PAGEREF _Toc348240000 �304��

Table 82:  ASR Resource Runtime Control Conditions	� GOTOBUTTON _Toc348240001  � PAGEREF _Toc348240001 �305��

Table 83:  ASR Resource Vendor-Related Parameters	� GOTOBUTTON _Toc348240002  � PAGEREF _Toc348240002 �306��

Table 84:  ASR Resource Technology Identification Parameters	� GOTOBUTTON _Toc348240003  � PAGEREF _Toc348240003 �306��

Table 85:  ASR Resource Context Control Parameters	� GOTOBUTTON _Toc348240004  � PAGEREF _Toc348240004 �307��

Table 47:  ASR Resource Speech Input Control Parameters	� GOTOBUTTON _Toc348240005  � PAGEREF _Toc348240005 �307��

Table 87:  ASR Resource Output Control Parameters	� GOTOBUTTON _Toc348240006  � PAGEREF _Toc348240006 �308��

Table 88:  ASR Resource Output Parameters	� GOTOBUTTON _Toc348240007  � PAGEREF _Toc348240007 �308��

Table 89:  ASR Resource Training Control Parameters	� GOTOBUTTON _Toc348240008  � PAGEREF _Toc348240008 �309��

Table 90:  ASR Resource Speech Buffer Control Parameters	� GOTOBUTTON _Toc348240009  � PAGEREF _Toc348240009 �310��

Table 91:  ASR Resource Runtime Control Action Parameters	� GOTOBUTTON _Toc348240010  � PAGEREF _Toc348240010 �310��

Table 92:  ASR Resource Error Codes	� GOTOBUTTON _Toc348240011  � PAGEREF _Toc348240011 �311��

Table 93:  ASR Resource Miscellaneous Constants	� GOTOBUTTON _Toc348240012  � PAGEREF _Toc348240012 �311��

Table 94:  ASR Resource Event Qualifier Values	� GOTOBUTTON _Toc348240013  � PAGEREF _Toc348240013 �313��

Table 95:  Player Runtime Control Actions	� GOTOBUTTON _Toc348240014  � PAGEREF _Toc348240014 �341��

Table 96: Recorder Runtime Control Actions	� GOTOBUTTON _Toc348240015  � PAGEREF _Toc348240015 �342��

Table 97:  Player Runtime Control Conditions	� GOTOBUTTON _Toc348240016  � PAGEREF _Toc348240016 �342��

Table 98:  Recorder Runtime Control Conditions	� GOTOBUTTON _Toc348240017  � PAGEREF _Toc348240017 �343��

Table 99:  Player Parameters	� GOTOBUTTON _Toc348240018  � PAGEREF _Toc348240018 �343��

Table 100:  Enumerated Ranges for Player Parameters	� GOTOBUTTON _Toc348240019  � PAGEREF _Toc348240019 �344��

Table 101:  Recorder Parameters	� GOTOBUTTON _Toc348240020  � PAGEREF _Toc348240020 �345��

Table 102:  Enumerated Ranges for Recorder Parameters	� GOTOBUTTON _Toc348240021  � PAGEREF _Toc348240021 �347��

Table 103:  Player Event Qualifier Values	� GOTOBUTTON _Toc348240022  � PAGEREF _Toc348240022 �349��

Table 104:  Recorder Event Qualifier Values	� GOTOBUTTON _Toc348240023  � PAGEREF _Toc348240023 �350��

Table 105:  Player/Recorder Error Codes	� GOTOBUTTON _Toc348240024  � PAGEREF _Toc348240024 �351��

Table 106:  Player/Recorder Coder Types	� GOTOBUTTON _Toc348240025  � PAGEREF _Toc348240025 �352��

Table 107:  Player/Recorder Properties	� GOTOBUTTON _Toc348240026  � PAGEREF _Toc348240026 �353��

Table 108:  Player/Recorder Optional Properties	� GOTOBUTTON _Toc348240027  � PAGEREF _Toc348240027 �353��

Table 109:  Player Attributes	� GOTOBUTTON _Toc348240028  � PAGEREF _Toc348240028 �353��

Table 110:  Recorder Attributes	� GOTOBUTTON _Toc348240029  � PAGEREF _Toc348240029 �354��

Table 111:  Signal Detector Parameters	� GOTOBUTTON _Toc348240030  � PAGEREF _Toc348240030 �371��

Table 112:  Signal Detector Runtime Control Actions	� GOTOBUTTON _Toc348240031  � PAGEREF _Toc348240031 �372��

Table 113:  Signal Detector Runtime Control Conditions	� GOTOBUTTON _Toc348240032  � PAGEREF _Toc348240032 �372��

Table 114:  Signal Detector Event Qualifiers	� GOTOBUTTON _Toc348240033  � PAGEREF _Toc348240033 �373��

Table 115:  Signal Detector Error Codes	� GOTOBUTTON _Toc348240034  � PAGEREF _Toc348240034 �374��

Table 116:  Signal Detector Miscellaneous Constants	� GOTOBUTTON _Toc348240035  � PAGEREF _Toc348240035 �374��

Table 117:  Signal Detector Signal Templates	� GOTOBUTTON _Toc348240036  � PAGEREF _Toc348240036 �375��

Table 118:  Signal Detector Attributes	� GOTOBUTTON _Toc348240037  � PAGEREF _Toc348240037 �375��

Table 119:  Signal Generator Runtime Control Actions	� GOTOBUTTON _Toc348240038  � PAGEREF _Toc348240038 �379��

Table 120:  Signal Generator Runtime Control Conditions	� GOTOBUTTON _Toc348240039  � PAGEREF _Toc348240039 �380��

Table 121:  Signal Generator Signal Templates	� GOTOBUTTON _Toc348240040  � PAGEREF _Toc348240040 �380��

Table 122:  Signal Generator Event Qualifiers	� GOTOBUTTON _Toc348240041  � PAGEREF _Toc348240041 �381��

Table 123:  Attribute Algebra Operators	� GOTOBUTTON _Toc348240042  � PAGEREF _Toc348240042 �385��

�

��autonumlgl �	S.100 Framework - Overview of Concepts

�autonumlgl �	Overview�xe "S.100:Overview"�

�xe "S.100"�The ECTF Computer Telephony Services Framework (referred to herein by its ECTF-assigned identifier, ECTF S.100, or, more frequently, S.100) provides an effective way to develop computer telephony applications in an open environment. It defines a client-server model in which client applications use a collection of services to allocate, configure, and operate hardware resources. It abstracts implementation details of call processing hardware and switch fabrics to enable portable applications to be written. It furnishes these services via an OS-independent API that may be extended to support customized APIs.

This chapter will introduce the following concepts:

The components of the S.100 framework, which describes the relationship of the various components of both the client and server.

The basic concepts of Sessions, Groups, Resources, and issues pertaining to allocation and concurrency.

Application Profiles, a declarative specification of the resources required by an application during its execution; it is provided by the application developer, and its contents are interpreted by the S.100 server.

Runtime Control (RTC), a mechanism by which an application can program one Resource to control an active operation on another Resource (e.g., stopping an ongoing Play via a DTMF).

Telephony Service Providers (TSPs), the components that provides an external call control interface to applications and a media stream interface to the S.100 server (i.e., the Call Channel Resource).

Other resources and system services included in the framework.

A discussion of strategies for implementing applications in the S.100 framework.

�autonumlgl �	Motivating Example - Inbound Call Processing�xe "Motivating Example"�

This section describes a simple example of the S.100 framework in order to motivate the discussions that follow. Since a fair amount of new terminology (highlighted in boldface) is introduced in this section, the reader should read it to arm him/herself with questions for the remainder of the chapter. More detailed discussions of the topics appear in later chapters; brief definitions of the terms are provided in the Glossary (Appendix B).

Each S.100 application will go through the same basic structure of setup, operation, shutdown, and handling of calls.  This section describes an example usage for an inbound call handling application.

To install an application into an S.100 system, an application provider supplies an Application Profile and an executable program.  The Application Profile�xe "Application Profile"� defines the combinations of resources (together with required attributes and initial parameter�xe "parameter"� settings) that the application requires to perform its function.  The S.100 server uses the information in the Application Profile to configure groups�xe "group"�, initialize parameters, and establish runtime controls�xe "runtime control"�.

The application first establishes a session�xe "Session"� with an S.100 server.  The function for creating a session uses the application’s Application Profile to import group configurations�xe "group configuration"�, parameter settings and other session-related information.  The application can also supply parameters programmatically. The application can also establish event handlers�xe "event handler"� to handle events returned to it by the server.

When the application is ready to accept calls, it registers with the System Call Router (or SCR)�xe "System Call Router"�, identifying itself with an Application Service ID (or ASI) �xe "Application Service ID"�.  When calls arrive on network interfaces terminating in the server, the SCR is notified of their arrival, and applies routing rules�xe "routing rules"� to determine which registered application should receive the call. It uses information in the Application Profile to create and configure a group, and hands the group to the selected application. It thus performs a combination of call control operations and group management operations on behalf of the application. The application could choose to perform these actions itself by using the Telephony Service Provider (TSP) provided by the installation (for call control) and the S.100 Group Management API functions (for group management).

When the application receives the group, it proceeds to process the call using the group and resource APIs.  The application may explicitly reconfigure the group to add or remove expensive resources if necessary.

The application may hand the group and hence the call to another application by handing the call to an ASI registered with the SCR.  When handing-off a group, an application may also indicate that it expects the Group to be returned.  The SCR maintains an “ownership stack” that allows a group (and its associated call) to be returned to the previous owner when an application is finished with that group.

When the call is terminated, an application may destroy the group explicitly, or simply return the group up the ownership stack for disposal. 



�autonumlgl �	Sessions and Session/Event Management�xe "session management"��xe "services:session management"�

Session/Event Management is the collection of services that allow a client to authenticate itself to an S.100 server and to manage message communication between the client and the server.  These services establish and maintain the integrity of the communications channel on the underlying data communications network linking the client and server, ensure proper routing of messages sent by the client, and deliver messages to the client Application Interface Adaptor (or AIA) �xe "Application Interface Adaptor"� for subsequent delivery to the application.

A Session�xe "session"� is an application’s handle to an S.100 server. It provides a logical circuit between the application (as a client) and the server, and an associated event queue through which the application can receive events from the server.

The session mechanism supports a command/response protocol between a client application and the server. API functions that invoke a server operation cause an appropriate command to be sent to the server via the session; when the server completes its processing of the command, this is signaled to the client by sending the client a completion event�xe "completion event"��xe "event:completion"�. The command and the completion event each contain a message payload containing appropriate parameters, return values, error and status information, and other information necessary for the function’s semantics.

The session also allows the server to send general events (often called unsolicited events�xe "unsolicited event"��xe "event:unsolicited"�) to the client.

The session mechanism allows an application to interact with the server in a number of different ways:

synchronous mode�xe "synchronous mode"��xe "mode:synchronous"�: All S.100 functions that invoke a server operation may be invoked in synchronous mode, causing the application to block until the completion event is received. In this case, the completion event is received in an output argument, thus mimicking a local function call.

asynchronous mode�xe "asynchronous mode"��xe "mode:asynchronous"��xe "event handler"� with event handlers: in asynchronous mode, the server-oriented function returns when the server command has been dispatched. The application may install event handlers to catch and process the completion event. They may also catch and handle unsolicited events.

asynchronous mode with polling�xe "polling"��xe "CTses_WaitEvent"�: an application may choose to explicitly invoke the function CTses_WaitEvent()�xe "functions:CTses_WaitEvent()"� to retrieve events, rather than use an event handler.



By using the asynchronous mode of operation, it is possible for an application to have multiple simultaneous transactions active.  Although the model supports concurrent transactions, not all function combinations may be run in parallel.  A function may return the error code CT_errorBUSY if another transaction is running with which it may not run in parallel.

�autonumlgl �	Multiple Clients and Multiple Servers�xe "multiple servers/clients"�

Multiple clients may create sessions to a single server and operate independently of one another, with Session IDs clarifying server requests and name space.  On the other hand, a single client application can establish sessions to more than one server, requesting services from all such servers simultaneously.  A server implementation thus has the freedom to present a single logical server with a single connection/authentication point to client applications, or to divide itself up into multiple distinct logical servers.

�autonumlgl �	Security�xe "Security"��xe "services:security"�

All operating systems that support client-server applications provide some way to authenticate clients (e.g., user identification fields in RPCs, Kerberos “tickets”, Windows NT security tokens) and preventing malicious applications from making unauthorized accesses to information (e.g., system or other users’ files) or resources (e.g., PBX outbound trunks).  A S.100 Server may make use of the native security mechanism of its host operating system in order to provide these services.

Authentication and access control could be provided in the S.100 Framework as follows:

When the session is established (via a login message from the client to the server), the message could contain appropriate information, such as an encrypted password, that the server could use for authentication. The interaction would be between the client process’ AIA and the server, and hence could be vendor- and host OS-specific.

A S.100 server could associate credentials with the authenticated session, and use them to implement access control of resources and containers in a vendor-specific manner.

�autonumlgl �	Service Registration�xe "Service Registration"��xe "services:service registration"�

Any client process may register itself as an application service�xe "application service"�.  As an application service, the application can be contacted by client applications and fulfill the requests of those applications.  The application service must define the name of the service, and define the API or protocol for using that service.  The S.100 framework supplies basic registration and message delivery service.

The service application identifies the service it with a string identifier (an Application Service ID or ASI) �xe "Application Service ID"��xe "ASI" \t "see Application Service ID"�.  The application’s session is registered in the server under that name plus a set of parameters or attributes also supplied by the application.  The S.100 framework provides an API that allows client applications to find the service application's session handle based on the ASI, and then send and receive messages from the application service.  The API for registering, finding and sending messages is described in a later chapter on session and event management.

This mechanism may be used by application developers to extend the functionality of an S.100 server without requiring access to server internals. This mechanism may be used, for example, to implement a System Call Router�xe "System Call Router"� (see later section) as an application that exports the appropriate interface.



� AUTONUMLGL �1.4.�	Groups and Resources�xe "groups and resources"�

After a session has been established, an application may begin to perform media processing operations. The S.100 component that actually performs these operations is called a resource�xe "resource"�, and consists of hardware, device drivers, and an interface to the S.100 server.

An application does not use a Resource as an isolated entity, but rather as part of a Group.  A Group �xe "Resource Groups" \t "See Groups"� is an S.100 object that presents a unified interface for allocation, configuration, interconnection, and handoff between applications. From the application’s point of view, a Group is a dynamically-configurable piece of custom computer telephony hardware with just the features required by the application. The application has a single handle to the Group, and passes it as an argument to the functions that invoke operations on resources within the Group.

S.100 defines standard Resource classes�xe "resource:class"�, e.g., Player, Recorder, Signal Detector, Signal Generator, ASR, Runtime Fax, and defines an application interface to each resource class.  Any resource that purports to interoperate within an S.100 system presents its functionality in terms of these Resource interfaces. It is common for one board to implement more than one resource type, and/or more than one instance of a resource type.

As an example of this, an application needing to handle an incoming telephone call might need a trunk interface, an audio playback capability, voice recognition services, and a DTMF signal detection capability.  The application writer supplies the definition of a Group consisting of a Call Channel Resource (for the trunk interface), a Player, an ASR Resource, and a Signal Detector Resource (this definition is supplied in a separate source file, the Application Profile), and assigns an identifier to this definition. When the application executes, it may create the group itself via an appropriate function call, or may have the group handed to it by another application or service, such as the System Call Router (SCR). After using the Group, the application may get rid of it by destroying it or by handing it off to another application.

�autonumlgl �	Primary and Secondary Resources�xe "Primary and Secondary Resources"�

The communication model of a group is of a tree with a Primary Resource�xe "primary resource"��xe "resource:primary"� as root and Secondary Resources�xe "secondary resource"��xe "resource:secondary"� as leaves, as shown in Figure 1.

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �1�:  Example of a Group

The tree topology defines the communications relationship in a Group - all communications are between the Primary and a Secondary Resource.  All members listen to the primary member and the primary member listens to whatever other member of the Group is currently talking (transmitting).  This assumes that only one secondary member talks at any point in time, but that is a reasonable model of how most physical implementations work. Multiple talker topologies are modeled in S.100 by inter-group conferencing.

�autonumlgl �	Group Management�xe "group management"��xe "services:group management"�

The Group Management service is the set of functionality within an S.100 server that allows a Group to be treated as a single entity by the application. It configures the Group, keeps track of the resources “owned” by the Group, the session that “owns” the Group, and the information required to correctly allocate resources and isochronous channels required by the Group to perform its operations.

Group Management supports the ability to pass control or ownership of a Group to other applications.  This allows a call to be handled by a series of applications without actually transferring the call.  Instead of moving a call to the application, the application is brought to the call.

Group Management is open to the addition of new technology Resources:  either new implementations of standard resources, or resources for new technologies. Developers of new resource technologies supply APIs to access and control those resources.  Those APIs can be built using the extension capabilities of the S.100 framework.

�autonumlgl �	Group Configuration/Reconfiguration�xe "Group Configuration"�

The S.100 framework distinguishes between the actions of configuring and allocating a Group. Group configuration consists of:

Identifying resources that are required to be in the Group;

for each identified resource, identifying the parameter settings, isochronous channel requirements, and initialization information required for allocation;

forming a Group object and returning a valid handle.

Groups are configured dynamically when requested by an application (via the appropriate CTgrp_Configure()�xe "functions:CTgrp_Configure()"� API).

Group allocation (or, more accurately, resource and channel allocation) consists of actually obtaining exclusive access to hardware and isochronous channel bandwidth - a topic discussed in a later section.

�autonumlgl �	Inter-Group Connections�xe "Connection management"��xe "services:connection management"�

Intra-group connections (i.e., allocation and management of the isochronous channels between resources in a Group) are implicitly managed by the S.100 server. Inter-group connections are managed explicitly by the application through the API.

Each Group has a virtual resource known as a Switch Port�xe "group:switch port"�. A Switch Port may be specified by an application in an Application Profile (as the Primary Resource of the Group), or may be added to a group by default by the server. In either case, it is an abstraction of the connection of the Group into the switch fabric of the server.

The S.100 Connection/Conferencing Management service allows the application to set up the following types of connections and conferences:

Connections between the Switch Ports of two or more Groups, as shown in the following figure. 

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �2�:  Example of a Connection

In the above figure, when the Primary Resource of Group A transmits, its data is received by Group A’s Switch Port, sent over the connection to the Switch Port of Group B, and is received by Group B’s Primary Resource (and vice versa).



Connections of two or more Groups to a Conferencing Resource, which performs the summing and forwarding operations of a conferencing bridge.

Monitoring connections across any two-party connection for attendant supervision applications.

The model is independent of the underlying hardware implementation.  The application does not have to manage multiple switch stages or physical addresses on a bus.  It also is independent of the exact time that resource allocation is performed, because connections can be defined when Groups are configured.



� AUTONUMLGL �1.5.�	Resource Allocation�xe "resource allocation"��xe "services:resource allocation"�

�In order for a Group to actually perform an operation, all of the hardware components required by the operation must be allocated to the application and properly configured, and the isochronous channels required by the hardware must be established. A server may employ a variety of group allocation strategies:

Hardware and channels may be allocated and reserved in advance (static allocation), �xe "static resource allocation"��xe "resource allocation:static"� or allocated and reserved immediately before they are to be used (dynamic allocation); �xe "dynamic resource allocation"��xe "resource allocation:dynamic"�

Hardware and channels may be allocated and reserved transparently with respect to the application (implicit allocation), �xe "implicit resource allocation"��xe "resource allocation:implicit"� or directly under application control (explicit allocation). �xe "explicit resource allocation"��xe "resource allocation:explicit"�

There are arguments for and against each of these strategies:

static allocation�xe "static resource allocation"��xe "resource allocation:static"�: Some hardware (e.g., CT hardware with no available isochronous bus) is effectively hardwired into groups, making dynamic allocation pointless. Even for hardware that can be configured dynamically, (statically) preconfiguring it into groups is a simple strategy for guaranteeing that, once the group is created, the resources will indeed be present when the time to perform its operation comes.

dynamic allocation�xe "dynamic resource allocation"��xe "resource allocation:dynamic"�: In a server managing many resources, dynamic allocation shares resources more efficiently; this is particularly true for expensive resources (e.g., large vocabulary ASR resources).

implicit allocation�xe "implicit resource allocation"��xe "resource allocation:implicit"�: for a server that can provide this feature, this is the simplest model of all for the application - the pattern of resource operations it requests drives all resource and channel allocation; The application never issues an explicit API function invocation to configure a group. However, provisions must be made for cases in which allocation fails (e.g., request queueing, timeouts).

explicit allocation�xe "explicit resource allocation"��xe "resource allocation:explicit"�: when dynamically allocating resources, this strategy provides the application with a means of controlling its own behavior in the face of allocation failures.

The S.100 framework makes provisions for each of the above-mentioned strategies. A server may choose to support only one such strategy, or several.

�autonumlgl �	Static and Dynamic Resource Specification�xe "static resource allocation"��xe "resource allocation:static"��xe "dynamic resource allocation"��xe "resource allocation:dynamic"�

The S.100 Framework uses group configuration specifications declared in the Application Profile as the means to specify the resources (along with their required properties) to be used by an application, whether they are to be allocated statically or dynamically. The syntax used to describe a group configuration permits a resource to be tagged as dynamically allocated, indicating that the server, if it can, may allocate the resource only when the group is about to be used in an operation. If the server cannot perform dynamic allocation, it may ignore the request and allocate all resources into the group when the group itself is created.

�autonumlgl �	Implicit and Explicit Resource Specification�xe "implicit resource allocation"��xe "resource allocation:implicit"��xe "explicit resource allocation"��xe "resource allocation:explicit"�

If the server does not itself perform implicit dynamic allocation, the application can perform such operations explicitly by using the functions CTgrp_Create()�xe "functions:CTgrp_Create()"�, CTgrp_Configure()�xe "functions:CTgrp_Configure()"�, CTgrp_Destroy()�xe "functions:CTgrp_Destroy()"� to perform such operations dynamically but under application control, rather than implicitly by the server.

If the server performs dynamic allocation, the application can override this either by not specifying dynamic resources in the group configuration declaration, or by locally overriding allocation and deallocation in the application, by employing the functions CTgrp_Allocate()�xe "functions:CTgrp_Allocate()"� and CTgrp_Deallocate()�xe "functions:CTgrp_Deallocate()"�, to specify to the server that implicit resource allocation is to be overridden locally.

� AUTONUMLGL �1.6.�	Server and Resource Concurrency�xe "concurrency:server"��xe "concurrency:resource"�

Distributed frameworks exist in order to reap some benefit from concurrency. The S.100 framework, for example, benefits by:

sharing scarce resources, whether the resource in question is an expensive DSP board (e.g., a high-end ASR resource) or bandwidth (e.g., use of a high-bandwidth isochronous bus). Board sharing maintains its average utilization at a high level, by running multiple applications requiring the resource (but not at the same time) concurrently.

Sharing isochronous bus bandwidth, which not only keeps bus utilization at a higher level, but allows multiple (hardware) resources to run concurrently.

However, since resources are not infinite, contention for concurrently-used resources must inevitably occur. In the S.100 framework, this arises in the following situations:

contention for resources (or for isochronous channels) among applications;

contention for a resource within an application (i.e., multiple commands to the same resource);

contention among secondary resources to talk to the primary resource.

�autonumlgl �	Inter-Application Resource Contention�xe "concurrency:inter-application resource contention"��xe "inter-application resource contention"�

Resource contention among applications is the classic resource contention problem in operating systems, which in the S.100 system is dealt with via resource allocation strategies. This topic was discussed in Section 2.5.

�autonumlgl �	Intra-Application Resource Contention�xe "concurrency:intra-application resource contention"��xe "intra-application resource contention"�

Contention for a resource within an application arises from the fact that S.100 API functions may be executed asynchronously; an application may be able to issue function invocations faster than its group can process them, or for some resource-specific reason some operations may be performed concurrently by a resource while others must be performed serially.

In the S.100 Framework, arbitration among concurrent commands issued to a resource by an application is implementation-dependent.

�autonumlgl �	Primary Resource Access Contention�xe "concurrency:primary resource access contention"��xe "primary resource access contention"�

This source of contention arises because of the Group communication model’s tree topology, with one Primary Resource that talks to the outside world and to all Secondary Resources. Primary Resources may “talk” and “listen” to their Secondary Resources at any time.  Secondary Resources may listen to their Primary Resources at any time. Multiple Secondary Resources needing to talk to the Primary Resource must contend with each other for the Primary Resource’s receive channel.

The two obvious arbitration schemes are: LIFO (Last-in, First-out - a stack), and FIFO (First-In, First-Out - a queue).

In the LIFO scheme (often referred to in ECTF specifications and white papers as the Last Talker Algorithm), �xe "Last Talker Algorithm"� a Secondary Resource beginning to talk to the Primary Resource temporarily overrides the previously-talking Secondary Resource (including performing all isochronous channel switching required to implement this switch) until it is done, at which point the previous talker resumes talking.

In the FIFO scheme (which might be called First Talker�xe "First Talker Algorithm"�), talkers are queued, rather than stacked. As in Last Talker, channel switching automatically occurs when a previous talker ceases to talk.

If in either of First Talker or Last Talker the stack or queue size is zero, one obtains schemes that might be called Blocking�xe "Blocking Algorithm"� and Pre-emption�xe "Pre-emption Algorithm"�. In the Blocking scheme, any attempt of a Secondary Resource to talk while another Secondary Resource is talking is immediately rejected (resulting in an error message). In the Pre-emption scheme, in contrast, the new talker pre-empts the previous talker.

There are good reasons for use of any of the four arbitration schemes described above, and an S.100 server may choose to implement any of them. The application may determine which scheme is supported by a server by querying an appropriate Group-related parameter (GROUP_ECTF_ArbitrationScheme).

� AUTONUMLGL �1.7.�	Application Profile�xe "application profile"�

Much of the information required to map the requirements of an application onto the services and resources available in a particular installation is tedious to express as C code and unavailable at the time an application is written.  Application profiles allow quasi-static descriptive application requirements to be expressed in an external file.  The Application Profile uses a simple declarative syntax in a way that can be read and edited by an installer or administrator.  

Some of the common items that may be specified in that Application Profile, and hence which may be tuned or configured by the administrator are:

Server names and authentication information

Resource requirements or restrictions

Group Configurations

Application Service definitions

An Application Profile is structured as a series of blocks for defining similar items.  The format is extensible and allow other blocks to be defined and added as necessary.  The blocks identified so far are:

A Session block�xe "session block"��xe "application profile:session block"� that specifies default parameters for session creation and login.

A Resource block�xe "resource block"��xe "application profile:resource block"� that specifies resources together with associated parameters, and gives them symbolic names.  The symbolic names are used elsewhere in the Application Profile.  The S.100 server will later attempt to allocate real resources that match the parameters specified here.

A Group Configuration block�xe "group configuration block"��xe "application profile:group configuration block"� that associates one or more Group Config Names each with a Group configuration specification.  A Group configuration specification defines the resource to be included in the Group, the static Runtime Controls, and initial parameter settings.

A Group Set block�xe "group set block"��xe "application profile:group set block"� that identifies sets of Group configurations that the application expects to use when reconfiguring a Group. The Group Set provides “hints that the server may use when allocating resources.

An Application Service block�xe "application service block"��xe "application profile:application service block"� that associates one or more Application Service Identifiers (ASIs) with additional information used during Group handoff or service registration.

A Conferences block�xe "conferences block"��xe "application profile:conferences block"�, specifying the parameters of the Conferencing Bridges to be used by the application in creating the Conferences.

The Installation block containing instructions�xe "application installation instructions"��xe "application profile:application installation instructions"� to the system administrator defining how the application should be installed and configured.

Parameter and RTC specification�xe "application profile:parameter and RTC specification"� is optional in the application profile, and provided as a convenience for application programmers and system administrators. Parameters and RTCs can be established programmatically.

The Application Profile can be created using simple default Groups of resources for relatively simple application processes, or the developer can create very detailed templates that allow for more precise application control of resources based on detailed parameter specifications.

The syntax and semantics of the Application Profile are defined in Appendix A.



�autonumlgl �	Runtime Control�xe "runtime control"�

Each resource class has an API (i.e., a set of functions, parameters, events, and constants) for controlling its behavior.  These interfaces make no reference to resources of other classes, so that the task of multiple vendors providing those interfaces is simpler.  However, it is desirable to the application writer to have a higher level of integration of the resources, without sacrificing the modularity of the APIs.  This is accomplished through Runtime Control or RTC. 

Runtime Control�xe "runtime control"��xe "RTC"� is a mechanism which an S.100 server and resources provide to allow “reflex” actions to be taken. It allows a Group resource currently performing an operation to modify that operation as the result of a condition detected by another resource in the Group. The entire interaction is performed on the server, without application intervention. For example, Runtime Control could be used to set up a Play operation to terminate when a DTMF digit is detected.

The condition and action of a runtime control instance is represented by a data structure called a Runtime Control  object (henceforth abbreviated RTC).  The RTC represents an action�xe "action"��xe "runtime control:action"� to be taken by a particular resource in a Group, and one or more conditions�xe "condition"��xe "runtime control:condition"� that are detected by some resource in the Group (possibly the same resource as would perform the action).  Detection of any of the conditions in the RTC would cause the resource detecting the condition (the controlling resource�xe "controlling resource"��xe "runtime control:controlling resource"�) to send a command to the resource required to take the action (the controlled resource�xe "controlled resource"��xe "runtime control:controlled resource"�). 

The command received by the controlled resource represents some “control” to be applied to an executing operation on that resource.

Some common examples of RTC usage are:

Terminating a record operation on the Recorder resource of a Group upon the detection of a tone or utterance by the Signal Detector resource.

Speeding up a playback operation by the Player resource based upon the detection of a tone by the Signal Detector resource.

Starting a speech recognition operation on the ASR resource after a beep operation has completed by the Player resource. In this case, the recognition operation must have been previously initiated in Paused mode; the RTC action would resume the operation.

An RTC�xe "RTC" \t "see runtime control"� can be either persistent �xe "runtime control:persistent"�or nonpersistent�xe "runtime control:nonpersistent"�. 

A persistent RTC is established in the API by calling the API function CTgrp_SetRTC()�xe "functions:CTgrp_SetRTC()"� with the RTC as an input argument.  The RTC will stay in effect (i.e., be capable of controlling its intended resource operation whenever the operation is active) for the lifetime of the Group until removed by another invocation of CTgrp_SetRTC()�xe "functions:CTgrp_SetRTC()"�. 

A nonpersistent RTC is established by passing it as an input argument in any of a large number of API functions (RTC is one of the standard arguments of an API function, as discussed in Chapter 3), and stays in effect until the function in which it is passed has completed its operation.

The runtime conditions that can be detected by controlling resources are resource type-specific. In general, RTC conditions are a subset of the events that a resource can generate. Each chapter of this specification describing resources contains a specification of the subset of events that may be used as RTC conditions.

� AUTONUMLGL �1.9.�	The S.100 Framework and Call Control�xe "call control"��xe "services:call control"�

An S.100 server exists in order to make media processing technologies available on a telephone call.  The means by which a call is received, made, switched, or otherwise manipulated in a telecommunications environment is referred to as call control.  

Call control is service performed by the components of a telephone switching network. It can be performed at the endpoint of a call (e.g., a telephone, modem, or line card in a computer), an option referred to as first party call control�xe "first party call control"��xe "call control:first party"�, or by a switch (e.g., a PBX or central office), referred to as third party call control�xe "third party call control"��xe "call control:third party"�. Call control services can be offered directly by an API and a device driver, or via a protocol operating in a communications network, such as the Signalling System 7 (SS7) �xe "Signalling System 7 (SS7)"��xe "call control:Signalling System 7 (SS7)"� protocol for CO-based Service Control Points, or the CSTA protocol (Computer Support for Telecommunications Applications) �xe "CSTA"��xe "call control:CSTA"� operating on the switchlink between a computer and a PBX.

A number of call control APIs are gaining widespread use. A non-exhaustive list includes:

Telephony API (TAPI) �xe "TAPI"��xe "call control:TAPI"�, developed by Microsoft for the Windows operating system family;

Telephony Services API (TSAPI�xe "TSAPI"��xe "call control:TSAPI"�), a CSTA-based API developed by AT&T and Novell;

Common-ISDN-API (CAPI�xe "CAPI"��xe "call control:CAPI"�), an API developed for control of an ISDN network by the Common-ISDN-API Working Group.

The S.100 framework achieves interoperability with telephony service providers (TSPs) displaying these many different options by defining a mechanism by which they can provide call control services for an S.100 resource.

� AUTONUMLGL �1.9.1.�	Telephony Service Providers�xe "Telephony Service Provider"��xe "call control:Telephony Service Provider"�

In any of the call control environments mentioned above, there is an object that does the “real work” of call control as instructed by the application program. That object is called generically a Telephony Service Provider or TSP�xe "Telephony Service Provider"��xe "TSP" \t "See Telephony Service Provider"�.  A TSP typically has full control over one or a set of lines, and delegates that control to one or more applications that share the TSP.  The applications’ control interface to a TSP is some call control API, such as TSAPI�xe "TSAPI"��xe "call control:TSAPI"� or TAPI�xe "TAPI"��xe "call control:TAPI"�.  

To fully operate in the S.100 environment, a TSP must provide access to the media stream of a call as a �xe "Call Channel Resource"��xe "CCR" \t "see Call Channel Resource"�Call Channel Resource (CCR). In practical terms, this means that a line must be terminated in a computer with the appropriate hardware (digitizers, DSPs, etc.) to make the media stream available for computer processing.  The call channel resource represents the digital data stream that is available for processing.  

A Call Channel resource can be added to a Group and connected to other resources.  The CCR itself does not do any call control.  The TSP’s call control API activates a call channel and connects that stream to other parties using telephonic switching protocols.  In a sense, a Call Channel is the simplest S.100 resource, since it has a minimal S.100 control API, that control being totally delegated to the external (non-S.100) APIs that drive the TSP.

In short, an S.100 application must perform operations on a group and on a TSP in order to obtain a group with an associated call on which it can perform media services. The S.100 framework defines a service, the System Call Router�xe "System Call Router"�, that encapsulate these operations into a simplified interface for applications. Most S.100 applications need not make direct use either of the TSP interface or of the Group Management Services interface in order to execute.

� AUTONUMLGL �1.9.2.�	The System Call Router�xe "System Call Router"��xe "services:System Call Router"�

The System Call Router (SCR) is a service that combines the critical elements of call control and group management into a unified interface for the convenience of applications.

The top or application interface to SCR defines the minimal functionality required to activate and control the media stream of a call.  That is, SCR supports functions to make, answer, drop, and transfer calls.  The bottom or TSP interface is whatever API is required to control the TSP or TSPs that the SCR is managing.  The framework, in fact, permits multiple Call Routers, each performing group management and/or call control in different ways, to coexist in a system.

For application initiated calls (outbound calls), the originating application specifies the ASI of the application that should handle the call.  For inbound calls, the SCR determines the ASI based on routing rules�xe "routing rules"� that use call-related information such as Trunk ID, DNIS, ANI, time of day and/or media type.  The system administrator defines the rules and assigns the ASIs to the processing applications.  Using a single combination TSP control application and call router (i.e. the SCR) allows many applications to easily share telephony services (the TSP and the Call Channels); it is not necessary to dedicate particular lines to particular applications.�

Using the SCR is optional.  An application can do all the operations done by the SCR: programming to a TSP API, configuring Groups with the Call Channel, and handing Groups to other applications.  Indeed, the implementation of an SCR is an application using the published S.100 APIs.  It even possible for an application to use a TSP directly to establish calls, and use the SCR for routing calls between application.  However, by using the SCR API the developer leverages the implementation of SCR on various TSP APIs.

There are circumstances where it makes good sense not to use the SCR.  A server supporting only a single application and a single variety of TSP could be controlled completely by that application.  If all applications and all telephony services in an installation use the same TSP API, and that API supports management by multiple applications, then it may be effective to use Call Channel resource access and Group creation to those applications directly, without using SCR.  Likewise, a multi-application server where resources are statically assigned to each application might not require the call routing service of SCR.  

The SCR service and API are described in detail in Chapter 6.  

�autonumlgl �	Inbound and Outbound Call Management�xe "call management"��xe "call control:call management"�

An important aspect of the S.100 Framework is the separation of call control and media services.  A call processing application is naturally structured into blocks of media services code, surrounded by blocks of code that take inbound calls, make outbound calls, or terminate calls.  The S.100 Framework lets the media services blocks be written as separate applications which operate on Groups that have already had the call control functions performed on them.  The System Call Router (mentioned earlier) performs the call control functions.

Inbound Routing�xe "call control:inbound call routing"��xe "System Call Router:outbound call routing"�

Inbound applications suffer from a special problem when sharing resources.  It is not efficient to dedicate telephony resources among a large number of applications, since those applications may only be used a few times in a given day.  Lines are therefore generally shared and use information extracted from the network about the call (such as the dialed number) to determine the application to which each call should be connected.  Since the clients can be distributed over a LAN, there are potentially a large number of clients each interested only in calls to specific dialed numbers.

The SCR is instructed to route incoming calls to different applications depending upon criteria such as technology or media type, trunk ID, ANI, DNIS, or time of day information.  In general, a system administrator who has knowledge of trunk connections and access to user and Application Profiles would be responsible for establishing the rules which the SCR will follow in connecting a call to an application.  These rules are called the routing rules�xe "routing rules"� �xe "System Call Router:routing rules"�and are set up and managed by the system administrator.

When an inbound call is presented to the SCR, it searches its routing rules to find a matching entry based on the criteria set up by the system administrator.  When one is found, the call is routed to the first application advertising the Application Service ID�xe "Application Service ID"� (ASI�xe "ASI" \t "See Application Service ID"�) specified by the matching entry.  If no application is currently advertising that ASI, the SCR will wait until that ASI is advertised or until the caller hangs up, whichever comes first. An administrator can set up default behavior by defining a default application, ASI, and rules that route calls to the default ASI when no other matching ASIs are found.

Outbound Routing�xe "outbound routing"��xe "System Call Router:outbound routing"��xe "call control:outbound call routing"�

For shared inbound/outbound call handling environments, with multiple applications sharing a single server, the SCR may be used to allocate outbound trunks as well.  In such an environment, an application wishing to dial out into the network would notify the SCR.  The SCR would then react by creating a Group, seizing a line (based on its outbound routing rules), confirm dial tone to avoid glare �xe "glare"� (that is, to prevent an incoming call on the line interrupting the preparation for outbound dialing), dial on the outbound line, and pass the Group to the intended application - usually one which is advertising the ASI specified by the requesting application - in either the alerting or connected state, as requested.

Group Hand-off�xe "group hand-off"��xe "System Call Router:group hand-off"�

The SCR also acts as means for an application to pass a Group call�xe "group call"� (i.e., a Group with an associated call) to another application. The only piece of information that an application need know is the ASI of the application to which it is passing ownership of the Group. The operation has the possibility to fail if there is no application which is advertising the specified ASI, or if the proper resources cannot be attached to the Group for the target application. In the case of failure, the Group call is returned to the original application so that the caller is not lost.

When the application currently in control of the Group hands off the Group, it does so entirely, leaving the original application without any reference to the Group.



�autonumlgl �	Technology Resources�xe "technology resources"�

Access to technology resources is through the Resource APIs which are part of the S.100 Framework.  These resources are the signal processing resources for the server.  They include:

Call Channel (the data stream of a telephone call) �xe "call channel resource"��xe "resource:call channel resource"�

Player / Recorder (such as audio and text-to-speech) �xe "player resource"��xe "resource:player resource"��xe "recorder resource"��xe "resource:recorder resource"�

Signal Detector / Generator�xe "signal detector resource"��xe "resource:signal detector resource"��xe "signal generator resource"��xe "resource:signal generator resource"�

Automatic Speech Recognition �xe "ASR resource"��xe "resource:ASR resource"�

Run-time FAX Transmitter / Receiver�xe "run-time FAX resource"��xe "resource:run-time FAX resource"�

An S.100 server may integrate technologies from multiple vendors and present a common interface via the S.100 framework resource APIs. Application binaries are not affected by an upgrade to newer technology or by a change from one vendor to another.  To use new resources or vendor-specific extension features, the application must be coded accordingly.

�xe "group hand-off"��xe "System Call Router:group hand-off"�

�autonumlgl �	Other S.100 Framework Services

This section discusses other S.100 Framework services not earlier discussed.

�autonumlgl �	Container Management�xe "container management"��xe "services:container management"�

The Container Management Service provides support for operating system-independent presentation of data storage, typically media data.  A container may be thought of as a type of server-resident file system.  Containers contain data objects which may be thought of as files.  This provides typed data services required for effective media storage, including: 

Location-independent access to data objects; all references to data objects by the applications are by name.

High-level abstraction of media (typed files).  Containers and data objects have selectable attributes.  Data objects also have settable parameters.

A standard name-space convention.

�autonumlgl �	T.611 Fax System Service�xe "Fax system service"��xe "services:Fax system service"�

The S.100 framework defines a standard API based on the ITU-T’s T.611 facsimile messaging specification that allows any process to request fax messaging services.

These services include broadcasting and inbound or outbound fax.

�xe "S.100:APIs"�

� AUTONUMLGL �1.11.3.�	S.100 APIs

The S.100 APIs are designed to provide

Support for multiple technologies

Extensibility, insuring growth and flexibility

Hardware independence

Application and data location independence

Scalability

Support for multiple applications, with call sharing between independent applications

Application flexibility — high-level abstraction of computer telephony resource behavior without restricting the development of any type of application.

There are two types of S.100 APIs:

Local APIs, whose action is performed exclusively by the AIA, and hence by the client; these functions are used to manipulate S.100 data structures (e.g., Key Value Sets, described in Chapter 3) and handle events.

Server APIs, whose operation takes place mainly on the server. The AIA may

perform argument verification and translate the API into an appropriate message, but  it does not actually perform the semantics of the API.  All of the core system services, e.g., group management, event management, call routing, are Server APIs, as are the technology resource APIs, e.g.,  Player, Recorder, ASR.

�xe "API:summary list"�The following table summarizes the current release of the S.100 APIs.

Table � SEQ Table \* ARABIC �1�:  S.100 API Categories

API�Functionality��Local APIs�Executed on Client��Key Value Set�Insertion and extraction of information and associated keys into/from Key Value Sets��Event handling APIs�Establishment of event handlers, synchronization and blocking on events returned from server�����Server APIs�Executed on Server��Session Management�Creates and destroys and registers sessions with an S.100 Server, handles message passing between client and server.��Group Management�Creates, configures and destroys Groups.��Connection/ Conferencing Management�Controls the media connections between Groups and creates conferences.��Container Management�Manages the storage and interchange of data. ��S.100 Call Router�Provides call control services, configures Groups with call channels, hands control of call/Groups to applications.��T.611 Fax System Service�Provides non-realtime fax services.�����Technology Resource APIs�Executed on Server��Call Channel�The resource that represents the data stream of a call.��Player/Recorder�Play and record audio data of different encoding types, text-to-speech, ADSI, and TDD��Signal Detector/ Generator�Detect and generate tones for purposes of caller input and control.��Runtime (T.30) Fax�Provide FAX functionality as a run-time resource, rather than as a system service.��Automatic Speech Recognition�Enables command and control of applications via speech recognition.��The following system functions are also enabled by APIs.

Table � SEQ Table \* ARABIC �2�:  API-Supported Functionality

Features�Functionality��Runtime Control�Permitting one resource to directly affect another under application control.��Event and Error Handling�Detecting changes in system states or application functional errors, and notifying the application.��The following additional APIs will be defined in future releases:

Table � SEQ Table \* ARABIC �3�:  Future S.100 APIs�xe "API:future S.100 APIs"�

API�Functionality��System Administration�Controlling and monitoring system services and controlling application behavior.��SNMP Network Management�S.100 system performance reporting for Network Management applications.��Diagnostics�Detecting system operation failures.��Macros�Combining API functions to improve performance in Client/Server systems.��Paging�Activating and delivering messages to paging terminals��Video�Send and receive video information.��

�autonumlgl �	S.100 Application Strategies

�xe "Application strategies"��xe "S.100:Application strategies"�

�autonumlgl �	Application Strategies for Resource Management

Generally, applications use one of two strategies for resource management.  The simplest is to define their resource requirements via the Application Profile, utilize the SCR to acquire a Group with a call, process the call, and return the Group to the SCR.  In this model, the application never even uses the Group management services.  The application is guaranteed that the necessary resources - with the proper parameter settings - are present, or else it would not have received the call.  It also holds all of the resources for the duration of the call.  This model, while simple to program, is potentially more wasteful of system resources.

The second model requires that the application use the Group management services to explicitly allocate and free resources as they are needed in the course of a call.  In this case, an application may choose to use the SCR to create its Groups and can alter the resources at its disposal dynamically during the course of a call.  The complexity this introduces is that the application must now deal with the case of a resource allocation failing due to “no resources available” and act appropriately.  This model has the benefit of allowing an application more control and more efficient utilization of resources, at the cost of some complexity.

�autonumlgl �	System Call Router (SCR) vs. Direct Call Control�xe "direct call control"�

Another basic decision of an application developer is whether to use the SCR to place and receive calls, or to create a group using Group Management AIs and allocate the trunks directly using the TSP.  Generally it is recommended that the SCR be used, since it improves the ability of an application to cooperate with other applications in the sharing of outbound or inbound trunks.  However, some application writers may choose to allocate those resources directly.

An application that chooses the approach of directly allocating trunk resources must have a more intimate knowledge of the system configuration (e.g. inbound vs. outbound trunks), the telephony service provider(s) associated with these resources, and must handle such issues as glare resolution on shared inbound/outbound lines.  An application of this type can still use the SCR to hand off control of Groups which it has created to other applications.

Regardless of whether an application receives a call through the SCR or allocates resources directly, it can use the TSP through its native API directly.  This allows it to perform basic first-party call control functions such as hold, transfer, disconnect, etc.  Applications that receive calls directly from the SCR need not use the TSP API at all.  They may have no need of these functions, since the SCR provides the ability to make and terminate calls.

�autonumlgl �	Typical Group�xe "group:typical configurations"� Configurations

Illustrated below are typical configurations of Groups and their switching relationships with varying degrees of complexity.  These configurations are by no means exhaustive, but suggest the range of configurations possible and the flexibility of the model.

�EMBED Word.Picture.8��� 

Figure � SEQ Figure \* ARABIC �3�:  Typical Group Configuration

Above is the most common configuration:  a voice or fax-based resource Group that terminates a phone line.  In this case, the application does not use the Connection Manager for switching; any switching required is provided by Group membership.

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �4�:  Drop and Insert Configuration

This configuration is commonly known as drop-and-insert�xe "drop-and-insert"�.  In this case, Group A provides some sort of automated interaction with an inbound or outbound caller, before connecting the caller out into the PSTN or PBX through Group B.  Other variations on this include adding resources to Group B to provide call processing towards the other caller.

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �5�:  Resource Sharing Configuration

In this configuration, both Group A and B represent calls which can share the resources of Group C or can be connected together.

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �6�:  Conference Call Configuration

In this configuration, �xe "monitoring configurations"�a call is initially handled by automated voice resources (Group A), and then connected to an operator (Group B) on a station set, with a supervisor (Group C) conferenced in.  A variation on this configuration might be to substitute a Group with a recorder for the supervisor to provide a record of the call.

�autonumlgl �	Summary

The S.100 Computer Telephony Framework defines a collection of server-based services and associated APIs that support multiple client computer telephony applications.

The framework is open with respect to different server implementations. Recognizing that resource allocation and concurrency strategies are still a matter of intense study in server-based computer telephony, the framework permits server developers to experiment with alternative implementations, while maintaining control over the semantics of client applications.

The framework is also open with respect to different underlying computer telephony hardware. It is intended to scale from small resources with no isochronous switch fabric up to large-scale systems, and to be independent of the technology used to implement the switch fabric.

The S.100 Framework facilitates the development of multi-technology, multi-application platforms that meet the varied requirements of today’s computer telephony systems.  It lets developers keep the simple simple, and make the complex possible.

�

�autonumlgl �	S.100 C Language API Conventions�xe "API:conventions"��xe "S.100:C language API conventions"�

�autonumlgl �	Introduction

The C Language binding specified in this document follows a number of conventions concerning use of constants, format of APIs and their arguments, and general nomenclature. Understanding and following these conventions not only will make the S.100 Framework easier to understand, but also easier to use.

�autonumlgl �	S.100 Symbol Definition�xe "S.100:symbols"��xe "symbols"�

An S.100 Symbol is an enumerated constant type whose values are controlled and unique across S.100 client and server processes. Symbols are used as identifiers for information which must be exchanged and used by multiple components, such as client and server components, or components developed by different vendors. Symbols are commonly used as keys in KVSets (see Chapter 3), and as identifiers for commands, actions, and conditions.

Symbols have both names, used in source code and documentation files, and values, and both are structured to clarify their  origin and usage.

�autonumlgl �	Names and Values of Symbols�xe "symbol names"��xe "symbols:names"��xe "symbol values"��xe "symbols:values"�

Symbols are 32-bit unsigned integer values consisting of three fields.  Each field in the value is assigned a name.  The complete symbol name is composed of the three segment names separated by underscores.  A symbol name looks like:

Object_VENDOR_ItemName 

Each segment name identifies the value of one of the three internal fields of the symbol.  The three fields represent 

the Object �xe "symbols:object segment"��xe "object segment"�or API for which this symbol was defined

the Vendor�xe "symbols:vendor segment"��xe "vendor segment"� who assigned the name and value for this symbol

the Item Name�xe "symbols:item segment"��xe "group"� for this particular symbol.

Symbol names must be unique within the first 32 characters.  Symbol names may not contain dollar-sign ($) or period (.) or other characters that are not identifier components for C compilers.  Underscores must appear only between the segment names, they may not appear within the Object, Vendor, or ItemName segments.  

By convention, the Object field is a short (2 to 8 chars) name of the object, abbreviated if necessary.  Vendor is limited to 5 characters and is rendered in uppercase to give symbols a uniform and distinctive appearance.  Item Names are formatted with mixed case, each “logical” word of the item name is capitalized for easier readability.  Item names are composed to ensure uniqueness of the complete symbol within 32 characters, additional characters may appear in the published symbol name for readability, but may be ignored by compilers and other processors.

�The names and values assigned to each Object and Vendor are controlled by the ECTF.  The particular values assigned to each Object and Vendor are defined for system internal developers in the SPI documentation but are not relevant to this API document.  This API document explains the assignment of Symbol names and their usage.

The collection of assigned names for Objects and Vendors appears in the tables below.  Item Names are only defined within the scope of an Object-Vendor pair.  That is, a list of Item Names is pretty much the same as a list of all symbols..  A list of assigned symbol names appears in the appendix.

�autonumlgl �	Extending the set of defined Symbols�xe "symbols:extending symbol names"�

This issue is documented here to clarify the intent and usage and structure of symbols.  This discussion is not otherwise relevant to application programming.  That is, applications do not create symbols, but developers should be aware that a symbol name does contain information about its origin and status with respect to this standard.

The set of symbols can be extended beyond those defined in this specification. Vendors of resources or system services may define new symbols to identify new commands or features of their technology.  The process described here assures that each Symbol has a unique value and name.

First a name is determined for a new symbol.  This requires choosing the Object, Vendor, and ItemName segments.  

If the symbol is being defined by other than the ECT, then a Vendor name other than “ECTF” must be used.  To obtain a new registered Vendor name and associated Vendor field value, contact the ECTF�.�xe "symbols:generating new symbol names"�  If an existing Vendor name is used, then the entire symbol name and its value must be negotiated and assigned by that Vendor.  The vendor is responsible for keeping the names and values within its scope unique.  Vendor names and values may be assigned to a company, a committee or other body which will act as the registry, repository, and arbitrator of names and values within that assigned space.

If the symbol represents an extension to an existing object or API, then the existing Object name should be used.  If the symbol is being defined for a new object or technology not currently standardized in the S.100 API, then a new object name may be chosen.  The value for a new object name can be decided by the associated Vendor.  Object names and values are always scoped by the adjacent vendor.  That is, NuObj_Vendor1 and NuObj_Vendor2 are conceptually and logically different objects with different Object values, although they may share the same print string.

The Item Name is chosen to make the symbol name meaningful to the application developer, but is otherwise arbitrary.  The value of the ItemName value field in the symbol is chosen by the Vendor.  

�When a new object, technology, or symbol achieves widespread usage, and particularly if there are numerous symbols from different vendors that accomplish the same thing, the ECTF may assign a symbol or object to the ECTF name and value space.  When possible, vendors are encouraged to use the name and semantics of previously published symbols to avoid a plethora of extension symbols for the application programmer.

�autonumlgl �	Standard Object and Vendor Names�xe "standard object and vendor names"�

Table � SEQ Table \* ARABIC �4�:  CTsymbol Object Names

Object Name�Defined or used by:�Abbreviated API name��Message�Standard component of a message���Session�Session management�CTses��Group�Group management�CTgrp��SCR�System Call Router�CTscr��Player�Player resource�CTplyr��Recorder�Recorder resource�CTrcdr��ASR�ASR Resource�CTasr��SD�Signal Detector resource�CTsd��SG�Signal Generator resource�CTsg��Conn�Connection object�CTconn��Conf�Conference object or resource�CTconf��Cont�Container object�CTcont��Table � SEQ Table \* ARABIC �5�:  CTsymbol Vendor Names

Vendor Name�Defined for use by:��ECTF�Standard symbols in S.100 specification��tbd�particular vendors as requested of the ECTF naming authority���autonumlgl �	Structure of a Symbol�xe "symbols:symbol structure"�

The internal layout of bit fields is controlled by ECTF, but is not yet finalized.  This issue will be addressed in the SPI (internal developers) documentation.

The partitioning of the 32-bit space for the various fields is not necessarily constant, expect some bits to indicate which partitioning is being used.  Developers should use only the official macros and tools for creating and parsing symbol values.

There are other types which are also controlled for name and values and value space.  Those items (like CTerror values) also use the structure of Symbols to partition the value and name space.  The typography for the names of errors is different from the conventions used for symbols, and the values of errors may overlap the value of symbols; but the same techniques for partitioning the value space and registering names and vendors is used for the various sets of unique enumerated values.

�autonumlgl �	S.100 C Language API Guidelines�xe "C language guidelines"��xe "S.100:C language guidelines"�

�autonumlgl �	Naming Conventions�xe "naming conventions"��xe "S.100:naming conventions"�

Names should conform to the following conventions:

Class Data Type Names�xe "Class data type names"��xe "naming conventions:Class data type names"�

These define the Data Type for a Class. Class Member Functions (below) are the methods for such Classes.

Sample format:	CTcls_ct  where

cls	A 2-4 letter descriptive name or abbreviation for the Class of which this is the Data Type definition (e.g., “kvs” for Key Value Sets).

_ct 	Indicates a Class Data Type. (Postfixing __ct will act as a visible reminder that the application must destroy all Objects of this Class after usage.)

Constant Data Type Names�xe "naming conventions:simple data type names"��xe "simple data type names"�

These define Data Types to which a set of defined Constants will be assigned.

Sample format:	CTtyp  where

typ	A descriptive name or abbreviation for that data type (e.g., “status” in the case of CTstatus).

Constant Names�xe "naming conventions:constant names"��xe "constant names"�

These are defined constants that correspond to the Constant Data Type Names above.  For example, a defined constant name CTgrp_uintCONSTANT is of constant data type CTuint.

Sample format:	CTcls_typNAME  where

cls	A 2-4 letter descriptive name or abbreviation for the Class that the constant is associated with.  (When a constant is associated with several or all Classes (i.e., return status) then the Class name cls should be omitted.)

typ	The constant type; it is normally named after the Constant Data Type (e.g., “status” in the case of CTstatus).

NAME	A descriptive name all in upper case.

�There are a few constant names that are used throughout the APIs (e.g., standard return values) that omit the cls substring in their nomenclature.  These are documented in Section 4.6.

Class Member Function Names�xe "naming conventions:class member function names"��xe "class member function names"�

These are the names of the Class methods used to access Resources or System Services; they typically return a status of type CTstatus.

Sample format:	CTcls_FunctionName  where:

cls	A 2-4 letter descriptive name or abbreviation for the Class of which this function is a method.

FunctionName	A descriptive name that uses an upper case first letter for each word.

Symbol Names�xe "naming conventions:symbol names"��xe "symbols:symbol names"�

The format for symbol names are defined in the previous section. 

Sample format: Obj_VENDOR_ItemName

Container Names�xe "naming conventions:container names"�

The S.100 Container Management API defines a textual naming convention for Containers.  The Container must  reside on a call processing Server .  The convention is as follows: 	

ContainerName:

where the “:” is a separator.  To refer to a nested Container the convention is as follows:

	ContainerName1:ContainerName2:.........ContainerNameN:

Data Object Names (Fully Qualified) �xe "naming conventions: Data Object names"�

The S.100 Data Object Management API defines a fully qualified textual naming convention for Data Objects.  The convention is as  follows:

ContainerName:DataObjectName

This simply consists of a Container name and a Container-relative Data Object name concatenated together.

To refer to a Data Object within a nested Container the following convention is used:

ContainerName1:ContainerName2:........ContainerNameN:DataObjectName

�Lists of Data Object Names�xe "naming conventions: object name lists"�

Lists of Data Object names can be formed by concatenating the Data Object names together separated by whitespace.

All name types are limited to 255 characters.  Any alpha-numeric character is valid with the exception of the following characters:

" ' : ; ( ) [ ] { } | <space>

<Whitespace> consists of one or more space, tab, carriage return, line feed or new line characters.

Examples include:

VOICEMAIL:	Server resident container.

Reserved Container Names

The following container names are reserved:

CTTEMP:		Temporary Container

�autonumlgl �	Function Arguments

�xe "argument ordering"��xe "API:argument ordering"�Ordering Rules

The Target Object of the operation should always be the first argument in the argument list.

Input arguments follow the Target Object. 

Output arguments follow input arguments and are always for fixed-length values.  In asynchronous mode, output arguments are not used.  In synchronous mode, an output argument is not used if the pointer supplied for that argument is NULL.

Standard arguments follow output arguments.  The standard arguments are RTC handle, parameter list, Transaction Information handle and mode (named RTC, ParmList, TranInfo, and Mode, respectively).  Standard arguments are optional, but when they are required, they will appear in the order given above. 

The generic prototype of an S.100 API function is: �xe "API:generic API function prototype"�

CTstatus = CTcls_FunctionName ( Target_Object [, <input_arguments>...] [, <output_arguments>...] [, RTC] [,ParmList] [, TranInfopointer] [, Mode] );

Transaction Information�xe "transaction information"��xe "TranInfo" \t "see transaction information"��xe "CTtranInfo" \t "see transaction information"�

The Transaction Information (CTtranInfo) argument is used to return information from the invocation of a server API (i.e., an API that causes action to be taken by the S.100 server) to a client process. The information returned includes the success or failure of the API invocation, and,  in the case of APIs called in synchronous mode, contains the completion event as well (see Sections 2.8,  5.3).

The design of the CTtranInfo argument is a compromise between performance and extensibility. The information returned from a server API to a client arrives in a KVSet, which is arbitrarily extensible; however, the information contained therein must be extracted via KVSet functions before it can be used by an application. The extraction functions would not be necessary if the returned information were provided in a C struct, but this would not be extensible.

The CTtranInfo argument, therefore, is defined as a C struct whose members represent the most commonly extracted information returned as a response to an API invocation. One of the members is a handle to a KVSet (the eventData member) which contains all of the information returned by the server API; the information contained in the other members of the struct is automatically extracted from this KVSet and stored in the members prior to the return of the API invocation.

Since this argument refers to a struct as an output argument, it must be a pointer to a struct, not a handle as  in the case of other API arguments.

The use of both the CTtranInfo struct and the eventData member of that struct are under application control. If the CTtranInfo argument in an API invocation is NULL, or if the eventData member is not an initialized KVSet, no transaction information is returned to the application.

The S.100 API provides a macro to assist an application writer in initializing a CTtranInfo struct and its accompanying eventData KVSet. This, and the CTtranInfo struct itself, are documented in Chapter 3.



Parameter List (ParmList) �xe "parameter list"��xe "ParmList" \t "see parameter list"��xe "API:parameter list"�

The parameter list argument in the S.100 API serves two functions:

A race condition-safe method for setting resource parameters prior to executing a function, and for similarly resetting the parameters to their previous setting.

A convenient location to supply optional arguments to a function whose infrequency of use does not warrant a separate argument in the function signature.

Parameter KVPairs in the ParmList argument are guaranteed to be in effect in the server prior to the execution of the function in which the ParmList appears, even if the function is invoked in asynchronous mode. After execution of the function, the parameter values are returned to their previous value. If the permanent values of the same parameters are changed by any other means during the execution of the function (e.g., by invoking the CTses_SetParameters() function while an asynchronous function is still in progress), the values of those parameters during function execution are undetermined.

The use of the ParmList argument as a repository for function options is a current study item, and a subsequent release of this specification may reserve the use of ParmList strictly for temporary parameter setting.

Object Handles�xe "object handle"��xe "API:object handle"�

All Object arguments (e.g., Groups, Sessions, KVSets) are specified as handles.  A handle is a local identifier for an Object.  They are only valid within one application's address space and cannot be passed from one application to another other than via Server-provided mechanisms.  All handles - within the context of a single application - share the same space and hence an Object argument can be overloaded with Objects of more than one class without ambiguity.  That is, Object handles are internally typed.

Pointers and Handles�xe "pointers and handles"��xe "API:pointers and handles"�

Pointers (where used by the APIs) are usually presented as predefined types and hence are invisible to the application.  This allows Operating System specific adjustments to be made (e.g., far pointer in DOS). 

Pointers to handles are used in the “Create” function for a handle.  Thereafter, the value of the handle is used.

Pointers to basic types are used when extracting values from KVSets, and for synchronous return values (which are extracted from an event-KVSet). 

The one context where exposed (i.e., visible) pointers are used is where the application must specify an output argument for an Object (e.g., &outputParmList, where the returned value is a KVSet).

Units�xe "units"��xe "API:units"�

All API arguments and parameters operate with units of the same granularity, as indicated in the table below:



Table � SEQ Table \* ARABIC �6�:  Units used in S.100 Quantities



Element�Measurement Unit��Time�milliseconds��Raw Data size�bytes��Page Size�scan lines���autonumlgl �	Vendor Independence�xe "vendor independence"�

S.100 standard functions and parameters are not specific to a particular technology provider’s product.  Application programmers only need concern themselves with these generic parameters in order to write a fully portable S.100 application.

However, by means of the extensibility provided by the Key Value Set, every technology vendor is able to provide specific value-added features, of which the application writer can take advantage if desired.  In such a case, the application may lose its portability to other vendors’ products.

�autonumlgl �	Programming Language Independence�xe "programming language independence"�

The APIs are designed under the consideration that they may be implemented in several programming languages.  The initial implementation is in C, but other language bindings may be added in the future.

�autonumlgl �	Data Location Independence�xe "data location independence"�

All APIs which reference stored data are designed to be data location independent.  For example, voice files may be played by the Player Resource whether they reside on the Client or on the Server.

�autonumlgl �2.3.6.�	Data Storage Management�xe "data storage management"�

The S.100 Container Management and Data Object Management APIs provide an operating system independent mechanism for the storage and interchange of system data.  The S.100 Container architecture is loosely based on Apple Computer’s “Bento Specification”.  See the References List for details.

For more details about Containers and Data Objects, see Chapter 8. 

� AUTONUMLGL �2.3.7.�	Function and Message Detail Nomenclature�xe "group"�

As described earlier, every server-oriented API contains some function specific arguments, both input and output, and some standard arguments (specifically, RTC, ParmList, TranInfo, and Mode identifier).  All input arguments and RTC correspond to KVPairs in the message, and all output arguments and ParmList correspond to KVPairs in the completion event returning from the server. In the functional details of API functions, the formal names of arguments correspond to the ItemName of the symbol naming that KVPair.

To illustrate this, consider the API function:

CTplyr_Play(Group, TVMList, Offset, RTC, ParmList, TranInfop, Mode) �xe "functions:CTplyr_Play()"�

This function sends the command Player_ECTF_Play to the Player resource of the Group passed in the first parameter, passing two function-specific input parameters (TVMList and offset), and two standard parameters (RTC and ParmList).  The mode parameter encodes whether the function is run in synchronous or asynchronous mode, and TranInfop, a pointer to a CTtranInfo struct, returns the completion event in synchronous mode, and command status information in asynchronous mode.

The message into which this is encoded, expressed as a KVSet, is: �xe "messages"�

(

 (Message_ECTF_Command=Player_ECTF_Play),

 (Message_ECTF_RTC=RTC),

 (Message_ECTF_ParmList=ParmList),

 (Player_ECTF_TVMList=TVMList),

 ...

)

The completion event returned by the server upon completion of the command, stored in the eventData KVSet within the CTtranInfo struct,  contains�xe "event:completion event"��xe "transaction information"��xe "messages"�

(

 (Message_ECTF_EventID=Player_ECTF_Play),

 (Message_ECTF_Qualifier=code indicating why the  play stopped),

 (Message_ECTF_Error=error code, if any)

 (Player_ECTF_TVM=index into tvmList of last TVM played)

 (Player_ECTF_Offset=index into TVM of last data played),

)

The values of Message_ECTF_EventID, Message_ECTF_Qualifier, and Message_ECTF_Error are also stored in the corresponding data members of the CTtranInfo struct.

The documentation convention for API functions and completion events to be followed in this specification is:

Each server-related API function/Message is documented by a ‘C’-language prototype as shown above;

Each input argument of the prototype corresponds to a Key, with appropriate Object and Vendor prefixes;

The completion event resulting from the function is documented as a table of KVPairs, as shown above;

The message corresponding to function call or event will also contain the standard Message KVPairs, as described in Chapter 3.

�autonumlgl �	Guidelines for API Extensions�xe "API:extensions"�

Technology Developers may extend the standard S.100 APIs with proprietary libraries.  The extensions are said to S.100-compatible only if they conform to all of the above rules and guidelines.  A vendor may add extensions in one of several ways:

In order to add vendor-specific parameters, event data or RTCs to an S.100 API, a vendor need only support the required proprietary key names (CTsymbols) in the Resource and document them.  Applications can then access them with the appropriate vendor-specific keys.

In order to add new functions to an S.100 API, a vendor need only support the required proprietary command messages via the function �xe "functions:CTses_SendMessage()"�CTses_SendMessage().  Applications can then execute the new functions by passing the appropriate vendor-specific command as a key value set to CTses_SendMessage().  The vendor may also supply callable extension functions that use CTses_SendMessage() internally.

In order to support an entirely new API, a vendor may create whatever functions are needed as long as they conform to the above rules and guidelines.  Vendor-specific APIs should not use the CT prefix; it is recommended that vendors use a prefix that uniquely identify them (perhaps the Vendor Name used for symbols).  The vendor can easily implement all of his proprietary callable functions by having them internally call CTses_SendMessage() on behalf of the application.

�� AUTONUMLGL �3.�	S.100 Data Types�xe "S.100:data types" \b��xe "data types" \b�

�autonumlgl �	Introduction

The S.100 framework defines a subset of the C data types for use in storing and communicating information between S.100 components.  An S.100 application may use any C data type in its execution, but the S.100 data types are those which are mutually agreed upon for use within the framework.

Most S.100 data types are transparent, i.e., documented within this specification in terms of C data types.  These may be manipulated by standard C operators.  Other objects are S.100 specific, like Group and Session.  These are presented as opaque “handles,” and may only be operated on using the published S.100 functions.

The S.100 defined data types are important for another reason.  These are the types which are allowed and supported as values in a Key Value Set�xe "key value set"��xe "KVSet" \t "see key value set"� (KVSet).  

The KVSet is used for information stored within an S.100 component, or communicated between components.  Within a KVSet each piece of information is represented by a Key�xe "key value set:key"� (a CTsymbol), a Value�xe "key value set:value"�, and the type of that value.  A KVSet value may be one of the supported S.100 types, including another KVSet.  The KVSet is an opaque object; it is constructed, accessed, and destroyed by S.100 API functions that are defined in this chapter. 

S.100 data types may be categorized as:

scalars,

fixed-length structures,

variable-length arrays,

KVSets and other opaque objects.

Each of these categories will be discussed in following subsections.  The subsection describing KVSets documents their constructor, destructor, and accessor functions as well.

KVSets provide an extensible method of communication between an applications and an S.100 server and fulfill the role of data structures�xe "data structures"� in most cases.

Parameter information is presented to a Service Provider Object in the form of a Key Value Set.  Key Value Sets are also used to encapsulate any other information that may be passed between an Application and a Service Provider Object.  For example, an event message which is sent from a Resource to an application is presented in the form of Key Value Set.

Key Value Sets are comprised of a number of Key Value Pairs (KVPs) �xe "key value pair"��xe "KVPair" \t "see key value pair"�, each of which are in turn comprised of a Key and an associated Value.



� AUTONUMLGL �3.2.�	Scalar Data Types�xe "data types:scalar data types"��xe "scalar data types"�

A scalar data type is an S.100 data type whose underlying representation is a 32-bit value (e.g., int, float). Many of these types are native to C and C++, but are nonetheless defined in the S.100 framework in order to enhance application portability across architectures.

A fixed-length struct value type is not a scalar, but its storage requirements are known in advance.  Further, for the value types in this category defined within S.100, their sizes are small enough that the same storage policies that are used for scalars can also be applied to them.

In the table below, the first column lists the typedef for each value in these categories.  The second column specifies the CTvaltyp constant used by APIs that identify the value type of a datum.

Table � SEQ Table \* ARABIC �7�:  S.100 Scalar Data Types

Value Type�Description�CTvaltyp Constant Name��CTint�signed 32-bit integer�CTkvs_valtypINT��CTuint�unsigned 32-bit integer�CTkvs_valtypUINT��CTbool�Boolean value (32-bit scalar)�CTkvs_valtypBOOL��CTstatus�Function return status (32-bit scalar)�CTkvs_valtypSTATUS��CTerror�Error code (32-bit scalar)�CTkvs_valtypERROR��CTsymbol�Symbol identifier�CTkvs_valtypSYMBOL��CTkvs_ct�Key Value Set handle�CTkvs_valtypKVS��CTobj_ct�One of the handle types below:�CTkvs_valtypOBJECT��CTses_ct�Session handle�CTkvs_valtypSESSION��CTgrp_ct�Group handle�CTkvs_valtypGROUP��CTconn_ct�Connection handle�CTkvs_valtypCONNECTION��CTconf_ct�Conference handle�CTkvs_valtypCONFERENCE��CTbyte�8-bit byte (only in CTbyte[])�(see CTkvs_valtypBYTEARRAY)��CTtime�unsigned 32-bit long (unsigned long)�CTkvs_valtypTIME��Many of the data structures defined in this table are self-explanatory, but some may require further clarification. 

CTtime�xe "data types:time"��xe "time representation"��xe "CTtime"�

The time data type is ANSI time as defined in IEEE POSIX 1003.1. �xe "POSIX 1003.1"� It is an unsigned long representing the number of seconds since the “epoch”, i.e., since 00:00:00 January 1, 1970 UTC.

Any library functions provided by a host operating system for manipulating ANSI time representations may be used to access and set CTtime variables.

CTsymbol �xe "CTsymbol"��xe "symbols:CTsymbol"�

An enumerated constant used for KVSet keys and other identifiers.  CTsymbol is described in more detail in the previous chapter.

CTerror�xe "data types:CTerror"�

This may be thought of as an enumerated type of error codes, although out of deference to the capacities of C compilers it is implemented as an unsigned integer. Values of this type are returned in completion events to indicate errors that may have occurred in the execution of a command.  A complete list of these values is found in Appendix B.

CTstatus�xe "data types:CTstatus"�

An enumerated type of functional return values from S.100 API functions.  The possible values are given below.  Some of these values are sensible only for APIs in asynchronous mode, and will never be returned from a synchronous mode function.

Table � SEQ Table \* ARABIC �8�:  Values of CTstatus type

Name�Description��CT_statusOK�Synchronous operation completed successfully.��CT_statusWARNING�Synchronous operation completed successfully but experienced an unusual occurrence.��CT_statusSTARTED�An asynchronous operation was accepted for execution by the system.��CT_statusFAIL�A synchronous operation failed to complete, or �an asynchronous operation failed to start.��CT_statusFATAL�Fatal system error occurred during a synchronous operation, or while starting an asynchronous operation.��Object Handles�xe "object handle"��xe "handle"�

The AIA provides object handles to represent various opaque objects in the S.100 system.  The object handle types are CTkvs_ct, CTgrp_ct, CTses_ct, CTconf_ct,  CTconn_ct, and CTobj_ct.  CTobj_ct is the generic type or supertype for the server-based object types, including CTgrp_ct, CTses_ct, CTconf_ct and others for which event the particular type is opaque to the application (i.e. a “service” handle).  The application constructs, destroys, or accesses these objects only by means of the API functions defined later in this specification.

S.100 handles are like handles in other APIs (e.g., WIN32 API, C runtime library); they are references to opaque data structures, and are used as arguments in functions used to access and manipulate those data structures.

There are 2 categories of handles in the S.100 API:

handles to server-resident objects, such as Groups and Sessions (server handles);

handles to client-resident objects, such as KVSets (client handles).

Server Handles�xe "server handle"��xe "handle:server handle"�

Server handles are type-aware; that is, a handle knows the type of the object it represents, and can perform runtime type checking. APIs that use server handles can accept more than one handle type as the value of an argument.

A handle is unique within an application process (even if that application process has concurrent sessions with different servers). Handles may be reused once the object they refer to has been destroyed or otherwise falls out of the scope of the application process.  Normal caveats apply with regard to using  a reference to an object after it has been invalidated.

A handle is the application process' private reference to an object. It has no meaning to another application process, just  as a pointer has no meaning to another process. Control of an object may pass from one application process to another, but the handle does not.

A handle is invalid unless initialized by a function which creates that object or receives reference to an existing object (Eg. group handoff).  A handle must be invalidated by calling a destroy function or passing the object to another application specifying  no further interest (Eg. group handoff).

Client Handles�xe "handle"��xe "client handle"�

The only identified client handle type is KVSet.

A client handle must be initialized before it may be used to define its object, and must be destroyed after use.

A client handle, by definition, is unique within an application process, and is limited in scope to that application process.



� AUTONUMLGL �3.3.�	Fixed-Length Structures�xe "data types:fixed-length types"��xe "fixed length types"�

Fixed-length structures are defined for special purposes within the S.100 framework.  Their implementation is as C language structs; as their definition is documented as part of this specification, to applications they are transparent data types.

Future revisions of this specification may define additional fixed-length structs.

Table � SEQ Table \* ARABIC �9�:  Fixed-Length Structure Types

Value Type�Description�CTvaltyp Constant Name��CTirange�typedef  struct

{

CTint lower;

CTint upper;

} CTirange;�CT_valtypIRANGE��

� AUTONUMLGL �3.4.�	Arrays and Strings�xe "arrays and strings"��xe "data types:arrays and strings"�

The S.100 framework defines arrays of S.100 scalar data types.  When arrays are used in API functions, they are specified with two values, a pointer to the array and the length of the array.  When an array is inserted into or extracted from a KVSet, the number of elements in the array is specified or returned respectively.  That is to say, variable length arrays in S.100 are counted.

�xe "Unicode"�S.100 is primarily Unicode-oriented; with few exceptions, strings in the framework are Unicode strings, defined as “wide character” (16-bit) arrays. These strings may be manipulated by any standard Unicode string manipulation libraries supplied with a host operating system. The type �xe "CTstring"��xe "data types:CTstring"�CTstring always refers to a Unicode string.

There are certain strings in the Fax system service and resource APIs that continue to be defined as 8-bit character arrays. These strings are defined by ITU-T Fax protocol standards, to which the S.100 fax APIs must remain compliant. These character arrays are defined as “char *”.

S.100 also defines arrays of (Unicode) strings. The data type CTstring[] is an array of individual UNICODE string pointers. Copy and destroy operations on a CTstring[]are “deep-copy” and “deep-destroy”, mallocing and freeing space as required. 

The following table lists the variable length data types available in the S.100 framework.

Table � SEQ Table \* ARABIC �10�:  S.100 Variable-Length Array Data Types

Value Type�CTvaltyp Constant Name��CTstring�CTkvs_valtypSTRING��CTstring[]�CTkvs_valtypSTRINGARRAY��CTbyte[]�CTkvs_valtypBYTEARRAY��CTint []�CTkvs_valtypINTARRAY��CTuint []�CTkvs_valtypUINTARRAY��CTbool []�CTkvs_valtypBOOLARRAY��CTstatus []�CTkvs_valtypSTATUSARRAY��CTerror []�CTkvs_valtypERRORARRAY��CTsymbol []�CTkvs_valtypSYMBOLARRAY��CTirange []�CTkvs_valtypIRANGEARRAY��CTkvs_ct[]�CTkvs_valtypKVSARRAY��CTobj_ct[]�CTkvs_valtypOBJECTARRAY��CTses_ct []�CTkvs_valtypSESSIONARRAY��CTgrp_ct []�CTkvs_valtypGROUPARRAY��CTconn_ct []�CTkvs_valtypCONNECTIONARRAY��CTconf_ct []�CTkvs_valtypCONFERENCEARRAY��Except for the first entry of the above table, there are no new typedefs; rather, the “[]” operator is applied to the scalar or structure typeMost of these are defined only for completeness, the S.100 framework and API do not use or require the use of all these types.

The data type CTbyte[] is a counted, word aligned data block.  CTbyte[] provides a way to move bulk data or arbitrary within the S.100 system.  Usage of this type is application specific, S.100 does not use this type.  It is provided to transport extended types which are not otherwise available in S.100.



�autonumlgl �	Key Value Sets�xe "key"��xe "key value set:keys"��xe "key value set" \b�

A Key Value Set (KVSet) is a collection of Key Value Pairs (KVPairs).  

A Key Value Pair is a tuple of: �xe "key value pair" \b�

a Key, which is of type CTsymbol, and

a Value, which is of any scalar, fixed-length structure, or array data type defined previously.

The type of the value associated with a KVPair is not statically bound.  Throughout this specification, value types associated with Keys are documented, but it is possible for a KVPair to return a value of a different type.  

Free use of this feature is strongly discouraged, but there is an important use of the feature in Resource or System Service parameter manipulation. It is often necessary for an application to determine whether a proposed parameter setting is legal for a particular parameter.  This is done by obtaining the range of values that the parameter may take (via the CTgrp_GetParameterRange()�xe "functions:CTgrp_GetParameterRange()"� function).  The range is returned as the value of a KVPair that has the same Key as the parameter itself.  This is done in order to simplify comparisons of parameters and corresponding parameter ranges.

The Key Value Set API provides a function CTkvs_GetType()�xe "functions:CTkvs_GetType()"� to obtain the value type of a KVPair.

Only one KVPair with a particular Key may be in a KVSet. If a new KVPair is inserted into a KVSet which already has a KVPair with a matching Key, the old KVPair is automatically “overwritten” by the new one.

A KVSet is a “local” data structure; it may be created by a service provider, resource, AIA, or application for its own use, and exists in the address space of the component that created it.  There are objects (e.g., Parameters) which the application accesses as KVSets, but these in fact exist only in the object that maintains them; when an application accesses them, information is returned to the application’s process space in the form of a KVSet.

The application may construct, destroy, and manipulate KVSets only by the functions defined in this chapter.

The following subsections document the API functions used to manipulate KVSets.  Tables of error values and other miscellaneous constants used by these functions are also included.

�autonumlgl �	Function Summary

These are functions for the creation and manipulation of Key Value Sets�xe "Key Value Sets function summary"��xe "Key Value Sets:function summary"�.

Table � SEQ Table \* ARABIC �11�:  Summary of KVSet Functions�xe "key value set:functions"�

Function Summary�Description��CTkvs_Clear(KVSet, Error)�Remove all KVPairs from kvSet��CTkvs_Copy(Dest, Source, Error)�Copy KVPairs of one KVSet into another��CTkvs_Create(KVSet, Error)�Create an empty Key Value Set.��CTkvs_Destroy(KVSet, Error)�Destroys a Key Value Set.��CTkvs_Get[typ] (KVSet, Key, Value, Error)�(collection of functions, one for each scalar type)�Retrieve a Value from a KVSet .��CTkvs_Get[typ]Array(KVSet, Key, HArray, NElems, Error)�(collection of functions, one for each array type)�Retrieve an array pointer.��CTkvs_GetNext(KVSet, Context, Key, Type, NElems, Error)�Get Key and Type of next KVPair.��CTkvs_GetString(KVSet, Key, HString, Error)�Retrieve a CTstring pointer��CTkvs_GetType(KVSet, Key, Type, Error)�Get the type of the associated Value.��CTkvs_Match(Query, Model, Result, Error)�See if query is a subset of model��CTkvs_Put[typ](KVSet, Key, Value, Error)�(collection of functions, one for each scalar type)�Insert a Key Value Pair into a Key Value Set.��CTkvs_Put[typ]Array(KVSet, key, HArray, nElems)�(collection of functions, one for each array type)�Insert an Array valued Key Value Pair.��CTkvs_PutString(KVSet, Key, HString, Error)�Insert a CTstring valued Key Value Pair.��CTkvs_ReadFile(KVSet, PathName, Error)�Read a KVSet from a file.��CTkvs_Remove(KVSet, KeyArray, KeyCount, Error)�Remove a set of Key Value Pairs.��CTkvs_NameString(Symbol, CTstringName, Buflen, Error)�Return a string identifying the symbol.��CTkvs_ObjectVendor(Symbol, VendorObject, Error)�Extract the VendorObject field from a Symbol��CTkvs_WriteFile(KVSet, PathName, Error)�Write a KVSet to a file��

This shows the complete list of accessor functions that are abbreviated above as CTkvs_Get[typ]() �xe "functions:CTkvs_Get[typ]()"� or �xe "functions:CTkvs_Get[typ]Array()"�CTkvs_Get[typ]Array().  The corresponding “set” functions also exist.  The names of those functions are the same as below, but CTkvs_Get() is replaced with CTkvs_Set().

The types as shown are correct for “Put” functions.  For the “Get” functions, the type of the actual “value” argument must be the address of the indicated type.  That is, CTint* for CTkvs_GetInt() and CTint** for CTkvs_GetIntArray().  

The exception to this rule is CTkvs_GetKVS() and CTkvs_GetKVSArray(), in that case, an initialized CTkvs_ct handle (or array of handles) must be supplied.  A KVSet will be cleared and replaced with the new KVPairs.  The semantics follow the rule that only CTkvs_Create() will create a new KVSet handle, other functions only copy and replace the contents of a KVSet. 

Table � SEQ Table \* ARABIC �12�:  KVSet Accessor Functions

value type�CTvaltyp_�KVSet Accessor��CTint�CTvaltyp_INT�CTkvs_GetInt()��CTuint�CTvaltyp_UINT�CTkvs_GetUint()��CTbool�CTvaltyp_BOOL�CTkvs_GetBool()��CTstatus�CTvaltyp_STATUS�CTkvs_GetStatus()��CTerror�CTvaltyp_ERROR�CTkvs_GetError()��CTsymbol�CTvaltyp_SYMBOL�CTkvs_GetSymbol()��CTirange�CTvaltyp_IRANGE�CTkvs_GetIRange()��CTstring�CTvaltyp_STRING�CTkvs_GetString()��CTbyte�supported only for byte array ���CTkvs_ct�CTvaltyp_KVSet�CTkvs_GetKVS()��CTobj_ct�CTvaltyp_OBJECT�CTkvs_GetObject()��CTses_ct�CTvaltyp_SESSION�CTkvs_GetSession()��CTgrp_ct�CTvaltyp_GROUP�CTkvs_GetGroup()��CTconn_ct�CTvaltyp_CONNECTION�CTkvs_GetConnection()��CTconf_ct�CTvaltyp_CONFERENCE�CTkvs_GetConference()��Table � SEQ Table \c�12�:  KVSet Accessor Functions (continued)

value type�CTvaltyp_ Array Type�KVSet Array Accessor��CTint[]�CTvaltyp_INTARRAY�CTkvs_GetIntArray()��CTuint[]�CTvaltyp_UINTARRAY�CTkvs_GetUintArray()��CTbool[]�CTvaltyp_BOOLARRAY�CTkvs_GetBoolArray()��CTstatus[]�CTvaltyp_STATUSARRAY�CTkvs_GetStatusArray()��CTerror[]�CTvaltyp_ERRORARRAY�CTkvs_GetErrorArray()��CTsymbol[]�CTvaltyp_SYMBOLARRAY�CTkvs_GetSymbolArray()��CTstring[]�CTvaltyp_STRINGARRAY�CTkvs_GetStringArray()��CTbyte[]�CTvaltyp_BYTEARRAY�CTkvs_GetByteArray()��CTkvs_ct[]�CTvaltyp_KVSARRAY�CTkvs_GetKVSArray()��CTobj_ct[]�CTvaltyp_OBJECTARRAY�CTkvs_GetObjectArray()��CTses_ct[]�CTvaltyp_SESSIONARRAY�CTkvs_GetSessionArray()��CTgrp_ct[]�CTvaltyp_GROUPARRAY�CTkvs_GetGroupArray()��CTconn_ct[]�CTvaltyp_CONNECTIONARRAY�CTkvs_GetConferenceArray()��CTconf_ct[]�CTvaltyp_CONFERENCEARRAY�CTkvs_GetConnectionArray()���autonumlgl �	Errors

The errors listed below are of type CTerror.

Table � SEQ Table \* ARABIC �13�:  KVSet Error Codes�xe "error codes"�



Error Code Name�Description��CT_errorOK�No error.��CT_errorSYSTEM�System error.��CTkvs_errorBADKVSET�Invalid Key Value Set��CTkvs_errorBADKEY�Bad or reserved Key used��CTkvs_errorKEYNOTFOUND�Key not found in Key Value Set��CTkvs_errorBADVALUETYPE�Bad Value Type��CTkvs_errorNULLARRAY�Null or empty array��CTkvs_errorVALUEISARRAY�Value is an array��CTkvs_errorVALUENOTARRAY�Requested value is not an array���autonumlgl �	Miscellaneous Constants and Symbols

Table � SEQ Table \* ARABIC �14�:  Miscellaneous KVSet Constants

Constant Name�Type�Description��KVSet_ECTF_Reset�CTsymbol�Symbol to reset KVSet iterator context��CT_boolTRUE�CTbool�True��CT_boolFALSE�CTbool�False���autonumlgl �	KVSet Function Definitions



CTkvs_Clear�Clear a Key Value Set��Name:�CTstatus  CTkvs_Clear(KVSet, Error)��Input:�CTkvs_ct�KVSet�Key Value Set to clear��Output:�CTerror*�Error�CTerror codes, as documented below��Return:�Standard CTstatus values���Description

Removes all of the KVPairs from the KVSet passed as an input argument.  The KVSet handle remains valid and unchanged, but the object to which it refers has no KVPairs in it upon return.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid

CT_errorSYSTEM	(	System Error

CTkvs_Copy�Copy a Key Value Set��Name:�CTstatus  CTkvs_Copy(Dest, Source, Error)��Input:�CTkvs_ct�Dest�Destination KVSet���CTkvs_ct�Source�Key Value Set to be copied��Output:�CTerror*�Error�CTerror codes, as listed below��Return:�Standard CTstatus values���Description

This function takes as input two valid KVSets (they may be empty, but the handles have to be initialized KVSet handles).  The KVPairs of source are copied into Dest.  The operation is a deep copy, recursively copying all arrays, structs, and KVSets that may be values of source.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorSYSTEM	(	System Error



CTkvs_Create�Create an empty Key Value Set��Name:�CTstatus  CTkvs_Create(KVSet, Error)��Input:�None ����Output:�CTkvs_ct *�kvSet �Handle to a new Key Value Set ���CTerror*�Error�CTerror codes, as listed below��Return:�Standard CTstatus values ���Description

This function creates an empty Key Value Set.  A valid KVSet handle to a KVSet with no KVPairs in it is returned in kvSet.

Cautions

If, on function entry, kvSet is an existing Key Value Set, the handle is overwritten but the old KVSet is not destroyed, memory loss may occur.

The Handle returned by this function is only valid inside the process in which this function was called.

It is the responsibility of the application to (eventually) destroy the returned KVSet.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorSYSTEM	(	System Error

CTkvs_Destroy�Destroy a Key Value Set��Name:�CTstatus  CTkvs_Destroy(KVSet, Error)��Input:�CTkvs_ct�kvSet�Key Value Set to destroy��Output:�CTerror*�Error�CTerror values, as described below��Return:�Standard CTstatus values ���Description

The KVSet to which the input argument refers is destroyed.  The memory used by all values in the KVSet is recursively freed. Upon return, the handle is no longer valid.

Cautions

After this function is complete, the handle will no longer be a valid reference to this object.  Further, the S.100 API implementation may re-use this handle.  Thus, using this handle after this function has completed will, at best, result in an error;  in some cases it may succeed,but with unexpected, and potentially disasterous, side-effects.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorSYSTEM	(	System Error

CTkvs_Get[typ]�Get Value of a Key Value Pair��Name:�CTstatus  CTkvs_Get[typ](KVSet, Key, Value, Error)��Input:�CTkvs_ct�KVSet�The Key Value Set���CTsymbol�Key�Key to search for��Output:�[typ]*�Value�Pointer (of appropriate type) for return value���CTerror*�Error�CTerror codes, as described below��Return:�Standard CTstatus values ���Description

CTkvs_Get[typ] refers to a set of KVSet querying functions for non-array values.  The KVSet to search and the key to search for are passed as input arguments. If a KVPair with the given Key is present, its value is returned in output argument Value. If no such Key is found, one of the error codes listed below is returned.

The explicit list of functions documented here is:



Function name type by [typ]

type�Function name��CTchar�CTkvs_GetChar()��CTstring�CTkvs_GetString()��CTint�CTkvs_GetInt()��CTuint�CTkvs_GetUint()��CTbool�CTkvs_GetBool()��CTstatus�CTkvs_GetStatus()��CTsymbol�CTkvs_GetSymbol()��CTerror�CTkvs_GetError()��CTkvs_ct�CTkvs_GetKVS()��CTses_ct�CTkvs_GetSES()��CTgrp_ct�CTkvs_GetGRP()��CTconn_ct�CTkvs_GetCONN()��CTconf_ct�CTkvs_GetCONF()��CTdm_ct�CTkvs_GetDM()��CTirange�CTkvs_GetIrange()��Notice that the CTbyte data type is not supported.  CTbyte is defined only as a base type for arrays, to serve as bulk data.

Cautions

This function is used only for scalars and structs.  Array data types (NOTE: including CTstring) are not returned by use of this function.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorKEYNOTFOUND	(	No Key Value Pair with the given Key could be found

CT_errorBADTYPE	(	The type of the corresponding value is not correct

CT_errorSYSTEM	(	System Error

CTkvs_Get[typ]Array�Get an Array from a Key Value Set��Name:�CTstatus  CTkvs_GetArray(KVSet, Key, HArray, NElems, Error)��Input:�CTkvs_ct�KVSet�Key Value Set���CTsymbol�Key�The Key we are searching for��Output:�[typ] **�HArray�Pointer to array in KVSet���CTuint*�NElems�Number of entries in array pointed to by HArray���CTerror*�Error�CTerror codes, as described below��Return:�Standard CTstatus values ���Description 

CTkvs_Get[typ]Array() refers to a set of KVSet querying functions for array values.  The KVSet to search and the key to search for are passed as input arguments. If a KVPair with the given Key is present, a pointer to the array in the KVSet is returned in output argument HArray. If no such Key is found, or if the data is not of the correct type,  the function returns one of the error codes listed below.

An CTstring, which is an array of bytes, might logically be considered to require a function in this family, but because of the common usage of CTstring, a separate function, CTkvs_GetString(), is documented for it. On the other hand, CTstring[] is covered here.

The full list of functions supported is:



type�Function name��CTint[]�CTkvs_GetIntArray()��CTuint[]�CTkvs_GetUintArray()��CTbool[]�CTkvs_GetBoolArray()��CTstatus[]�CTkvs_GetStatusArray()��CTerror[]�CTkvs_GetErrorArray()��CTsymbol[]�CTkvs_GetSymbolArray()��CTstring[]�CTkvs_GetStringArray()��CTbyte[]�CTkvs_GetByteArray()��CTkvs_ct[]�CTkvs_GetKVSArray()��CTobj_ct[]�CTkvs_GetDMArray()��CTses_ct[]�CTkvs_GetSESArray()��CTgrp_ct[]�CTkvs_GetGRPArray()��CTconn_ct[]�CTkvs_GetCONNArray()��CTconf_ct[]�CTkvs_GetCONFArray()��Cautions

Unlike in the case of scalar or fixed length structures, what is returned in this function is a pointer to the data.  The application may then treat *HArray as if it were a pointer to the data (or an array of the data).  The memory to which HArray points  is still part of the KVSet, and will be freed when the KVSet is destroyed or when the KVPair is removed or updated.  An application wanting to retain this data should take care to copy it.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorKEYNOTFOUND	(	No Key Value Pair with the given Key could be found

CT_errorVALUENOTARRAY	(	The Value found was not an array

CT_errorSYSTEM	(	System Error

CTkvs_GetNext�Traverse a Key Value Set ��Name:�CTstatus  CTkvs_GetNext (KVSet, Context, Key, Type, NElems, Error)��Input:�CTkvs_ct �KVSet �The Key Value Set to traverse ���CTsymbol *�Context �An opaque context token ��Output:�CTsymbol *�Key �Key of the next KVPair���CTvaltyp*�Type�Value type the next KVPair���CTuint*�NElems�Number of elements if Value is an array��Standard�CTerror*�Error�Error code when return value is not CTstatus_OK��Return:�Standard CTstatus values ���Description

This is the KVSet iterator function.  It returns information about a series of KVPairs from a KVSet.  

To initialize the iterator and retrieve the first KVPair, Context must refer to the special key KVSet_ECTF_FirstKey.  If there are no more pairs to be returned, this function returns status CT_statusWARNING, and Error is CT_errorEOKEYS.  The value of Context is updated by this function, the application should not use or change Context except to reset it to KVSet_ECTF_FirstKey, any other usage will cause unspecified results�.

Each invocation of this function returns the Key and Type of the next KVPair in the KVSet.  If the next pair is an array, NElems is set to the length of the array, if the KVPair is not an array value, then NElems is set to zero, this may be used to quickly determine if the value is an array.  

The order in which KVPairs are returned is not guaranteed to be stable or repeatable.  The only guarantee is that all KVPairs will eventually be returned.  When there are no more KVPairs to be returned, the function returns an error, and the value the output parameters will be unchanged.  

Cautions

If KVSet or context is modified between calls to this function, the result is unspecified.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorENDOFKEYS	(	Attempt to get the next key while already at the end of the keys

CT_errorBADKEY	(	The given key was invalid or CT_symbolEOKEYS

CT_errorSYSTEM	(	System error



CTkvs_GetString�Get a String from a Key Value Set��Name:�CTstatus  CTkvs_GetString(KVSet, Key, HString, Error)��Input:�CTkvs_ct�KVSet�Key Value Set���CTsymbol�Key�The Key we are searching for��Output:�CTstring*�HString�Pointer to the string to be retrieved���CTerror*�Error�CTerror codes, as described below��Return:�Standard CTerror values ���Description 

This function retrieves a CTstring from a KVSet.  The KVSet to search and the key to search for are passed as input arguments. If a KVPair with the given Key is present, a pointer to the string in the KVSet is returned in HString. If no such Key is found, or if the data is not of the correct type, the function returns one of the error codes listed below.

Cautions

This function is like the array retrieval functions in that the return value is a pointer to storage in the KVSet.  An application requiring a copy of the string should copy it, using any of the standard string copy functions.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorKEYNOTFOUND	(	No Key Value Pair with the given Key could be found

CT_errorVALUENOTARRAY	(	No Key Value Pair with the given Key could be found.

CT_errorSYSTEM	(	System Error

CTkvs_GetType�Get the Type of a Value in a KVSet��Name:�CTstatus CTkvs_GetType(KVSet, Key, Type, Error)��Input:�CTkvs_ct�KVSet�Key Value Set���CTsymbol�Key�The Key to be searched for��Output:�CTvaltyp*�Type�The type of the found value���CTerror*�Error�CTerror values, as described below��Return:�Standard CTstatus values���Description

This function returns the an value type of the Value associated with Key in the KVSet KVSet .

The Key Value Set KVSet is searched for a Key Value Pair containing the Key Key.  If found then Type is set to the type of the Value found in the Key Value Pair.  If Key is not be found then, then an error is returned and the value of Type is unchanged.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorKEYNOTFOUND	(	No Key Value Pair with the given Key could be found

CT_errorBADKEY	(	An invalid or reserved key was given as input.

CT_errorSYSTEM	(	System Error



CTkvs_Match�Verify Subset Relationship of KVSets��Name:�CTstatus  CTkvs_Match(Query, Model, Result, Error)��Input:�CTkvs_ct�query�KVSet containing the “query”���CTkvs_ct�model�KVSet containing the “model”��Output:�CTbool*�Result�CT_boolTRUE or CT_boolFALSE, depending on whether a match was made or not���CTerror*�Error�CTerror values, as described below��Return:�Standard CTstatus values ���Description

This function takes as input arguments two KVSets, Query and Model, and determines whether:

Every KVPair in Query is also in Model;

For each such pair, the corresponding values in Query and model Match.

The KVSet Query may contain only KVPairs whose Keys are parameters of a Resource or System Service. 

The KVSet Model must contain KVPairs whose Keys are Resource or System Service parameters, and whose corresponding values are legal CTiranges for the parameter.

If every KVPair in Query has a corresponding KVPair in Model (i.e., with the same Key), and if the value of the KVPair in Query is within the range specified in the corresponding value in Model, then the value CTbool_TRUE is returned in Result. If any of these conditions fail, or if any KVPair in Query does not specify a parameter for which a range is defined, then the value CTbool_FALSE is returned in Result.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorSYSTEM	(	System Error

CTkvs_Put[typ]�Insert a Key Value Pair into a KVSet��Name:�CTstatus  CTkvs_Put[typ](KVSet, Key, Value, Error)��Input:�CTkvs_ct�KVSet�Key Value Set to insert into���CTsymbol�Key�The Key of the Key Value Pair being inserted���typ�Value�The Value of the Key Value Pair that is being inserted��Output:�CTerror*�Error�CTerror codes, as documented below��Return:�Standard CTstatus values ���Description

CTkvs_Put[typ] defines a class of Key Value Pair insertion functions, where typ identifies the type of the value to be inserted.

This function inserts a Key Value Pair (Key, Value) into the Key Value Set (KVSet). If a Key Value Pair with the same Key already exists within the Key Value Set then it is replaced.

The explicit list of functions documented here is:



type�Function name��CTchar�CTkvs_PutChar()��CTint�CTkvs_PutInt()��CTuint�CTkvs_PutUint()��CTbool�CTkvs_PutBool()��CTstatus�CTkvs_PutStatus()��CTsymbol�CTkvs_PutSymbol()��CTerror�CTkvs_PutError()��CTkvs_ct�CTkvs_PutKVS()��CTses_ct�CTkvs_PutSES()��CTgrp_ct�CTkvs_PutGRP()��CTconn_ct�CTkvs_PutCONN()��CTconf_ct�CTkvs_PutCONF()��CTdm_ct�CTkvs_PutDM()��CTirange�CTkvs_PutIrange()��Notice that the CTbyte data type is not supported.  CTbyte is defined only as a base type for arrays, to serve as bulk data.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorKEYNOTFOUND	(	No Key Value Pair with the given Key could be found

CT_errorBADKEY	(	The given Key is invalid or a reserved Key.

CT_errorSYSTEM	(	System Error

CTkvs_Put[typ]Array�Insert an array Value into a Key Value Set ��Name:�CTstatus  CTkvs_PutArray(KVSet , Key, HArray, NElems, Error)��Input:�CTkvs_ct�KVSet�Key Value Set to insert into���CTsymbol�Key�The Key of the Key Value Pair we are inserting���typ[]�HArray�Array to be inserted���CTuint�NElems�first Index of KVSet array to be put��Output:�CTerror*�Error�CTerror codes as described below��Return:�Standard CTstatus values���Description

CTkvs_Put[typ]Array() refers to a set of KVSet insertion functions for array values.  The KVSet into which to perform the insertion, the key and array comprising the KVPair, along with the length of the array, are the input arguments.  A new KVPair will be inserted into the KVSet, whose key is Key, and whose value will be the address of HArray; it is thus the inverse of CTkvs_Get[typ]Array(), which returns a pointer to the array in the KVSet. If another KVPair is present with the same Key, it is overridden by this new KVPair.

The explicit list of functions documented here is:



type�Function name��CTint[]�CTkvs_PutIntArray()��CTuint[]�CTkvs_PutUintArray()��CTbool[]�CTkvs_PutBoolArray()��CTstatus[]�CTkvs_PutStatusArray()��CTerror[]�CTkvs_PutErrorArray()��CTsymbol[]�CTkvs_PutSymbolArray()��CTstring[]�CTkvs_PutStringArray()��CTbyte[]�CTkvs_PutByteArray()��CTkvs_ct[]�CTkvs_PutKVSArray()��CTobj_ct[]�CTkvs_PutObjectArray()��CTses_ct[]�CTkvs_PutSessionArray()��CTgrp_ct[]�CTkvs_PutGroupArray()��CTconn_ct[]�CTkvs_PutConnectionArray()��CTconf_ct[]�CTkvs_PutConferenceArray()��Cautions

Note that this function hands over the array to the KVSet - it does not copy the data.  This was done to give the application the option of doing a copy-less insertion into a KVSet. It does, however, require the application to allocate heap storage for the array.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorKEYNOTFOUND	(	No Key Value Pair with the given Key could be found

CT_errorBADKEY	(	The given Key is invalid or a reserved Key.

CT_errorNULLARRAY	(	A null array or empty array was given.

CT_errorSYSTEM	(	System Error

CTkvs_PutString�Insert a String Value into a KVSet��Name:�CTstatus  CTkvs_PutString(KVSet, Key, HString, Error)��Input:�CTkvs_ct�KVSet�Key Value Set to insert into���CTsymbol�Key�The Key of the Key Value Pair being inserted���CTstring�HString�The string Value of the Key Value Pair that is being inserted��Output:�CTerror*�Error�CTerror codes, as described below��Return:�Standard CTstatus values���Description

CTkvs_PutString() inserts a KVPair whose value is a CTString into a KVSet. If a KVPair with the same Key already exists in the KVSet, then it is replaced by the pair (Key, HString).

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorKEYNOTFOUND	(	No Key Value Pair with the given Key could be found

CT_errorBADKEY	(	The given Key is invalid or a reserved Key.

CT_errorSYSTEM	(	System Error



CTkvs_ReadFile�Read a KVSet from a local file��Name:�CTstatus  CTkvs_ReadFile(KVSet, PathName, ParmList, Error)��Input:�CTkvs_ct�KVSet�Initialized KVSet into which file is to be read���CTstring�PathName�Pathname of file on local file system from which to read��Standard:�CTkvs_ct�ParmList�Additional extension parameters��Output:�CTerror�Error�CTerror codes, as described below��Return:�Standard CTstatus values ���Description

This function loads a collection of KVPairs stored in a file on the client into the KVSet specified by the input argument KVSet.  The file format is implementation-specific, and compatible with the CTkvs_WriteFile() function.

Errors

CT_errorOK	(	No error occurred

CT_errorINVALIDFILE	(	The file specified by the pathname could not be opened.

CT_errorBADFILEFORMAT	(	The file could be opened, but the contents were corrupted or not of proper format.

CT_errorBADKEY	(	The given Key is invalid or a reserved Key.

CT_errorNULLARRAY	(	A null array or empty array was given.

CT_errorSYSTEM	(	System Error

CTkvs_Remove�Remove a Key Value Pair from a KVSet��Name:�CTstatus  CTkvs_Remove(KVSet, KeyArray, Error)��Input:�CTkvs_ct �KVSet �Key Value Set to remove from ���CTsymbol[] �KeyArray�The array of keys to delete���CTint�KeyCount�Number of keys in KeyArray��Output:�CTerror*�Error�CTerror codes, as described below��Return:�Standard CTstatus values ���Description

This function removes from the KVSet KVSet all KVPairs whose Keys appear in the array KeyArray. NElems is an input argument providing the number of elements in KeyArray.

It is not an error if not all of the Keys in KeyArray are found in KVSet.

Cautions

Removal of the last Key Value Pair from a Key Value Set leaves the Key Value Set in an empty state.

Errors

CT_errorOK	(	No error occurred

CT_errorBADKVSET	(	The given Key Value Set was invalid.

CT_errorSYSTEM	(	System Error

CTkvs_ObjectVendor�Extract the ObjectVendor field from a CTsymbol��Name:�CTstatus CTkvs_Vendor(Symbol, Vendor, Error)��Input:�CTsymbol�Symbol�Symbol from which Vendor field is to be extracted��Output:�CTuint*�Vendor�Vendor ID to be returned���CTerror*�Error�CTerror codes, as described below��Return:�Standard CTstatus values���Description

CTkvs_ObjectVendor() is a function that extracts the encoded Vendor and Object fields from a Symbol, returning it as a CTuint.  The returned value, of type CTuint, may be compared with ECTF-defined constant macros representing Vendors.

This function is provided service provider applications that need to parse command symbols and delegate commands to the appropriate Object or Vendor.  This function is not used by normal applications.

The user may not make any assumptions concerning segment values, e.g. to iterate on a range of Object or Item values, as the ECTF reserves the right to change implementation details.  The use of an individual segment value should be restricted to equality comparison.

Errors

CT_errorOK	(	No error occurred

CT_errorBADSYMBOL	(	The value of the symbol was not defined.

CT_errorSYSTEM	(	System Error

CTkvs_NameString�Get the Name of a CTsymbol��Name:�CTstatus CTkvs_NameString(Symbol, String, Buflen, Error)��Input:�CTsymbol�Symbol�Symbol from which Vendor field is to be extracted���CTstring�String�pointer to char buffer into which the name will be copied.���CTuint�Buflen�size of String��Output:�CTerror*�Error�CTerror codes, as described below��Return:�Standard CTstatus values���Description

This function gets the name of a symbol, returning it as a Null terminated string.

If the symbol has a registered name, that name will be returned.  If the symbol has no registered name, the string returned will show the fields of the symbol in numeric format.  If the format of the symbol is unrecognized, a warning status is returned and the string is rendered numerically.

The format of numeric strings returned by this function will be parseable by CTkvs_ReadFromFile(). 

Errors

CT_errorOK	(	No error occurred

CT_errorBADSYMBOL	(	The value of the Symbol is undefined.

CT_errorSYSTEM	(	System Error

CTkvs_WriteFile�Write KVSet to a file��Name:�CTstatus  CTkvs_WriteFile(KVSet, PathName, ParmList, Error)��Input:�CTkvs_ct�KVSet�Initialized KVSet from which file is to be written���CTstring�PathName�Pathname of file into which to write��Output:�CTerror*�Error�Standard error codes, as documented below��Standard:�CTkvs_ct�ParmList�Additional extension parameters��Return:�Standard CTstatus values���Description

This function writes a KVSet into a file on the local file system. If the file already exists, its current contents are deleted.  The file format is implementation-specific, and compatible with the CTkvs_ReadFile() function.

Numeric, boolean, string and KVSet values, and arrays and ranges of those types that are written by this function shall be readable by CTkvs_ReadFile().

Cautions

Not all values can be consistently represented in a file.  For example, object handles may not necessarily survive.

Errors

CT_errorOK	(	No error occurred

CT_errorINVALIDFILE	(	The file specified by the pathname could not be opened.

CT_errorSYSTEM	(	System Error





�� AUTONUMLGL �4.�	Session and Event Management�xe "session management" \b��xe "services:session management" \b�

�autonumlgl �	Introduction

This API defines the functions which are used to create a logical binding between an application and the S.100 Services.  This binding is called a Session�xe "session"� and it provides a context for the delivery of S.100 Services.  

A Session combines several concepts and services for the application.  A session represents:

an application’s view or handle to an S.100 server.

the server’s view or handle to an application.  From the server’s point of view, the session is the source and destination of all communication with the client. 

a conversation  or communications circuit between the application and the server.  From the client’s point of view a Session owns and controls all activity in the server.

an event queue in the client.  The event queue is the mechanism for handling events synchronously in the application.  The event queue is also the organizational structure for  asynchronous event handlers, each event handler is associated with a session/event queue.

Local and remote clients access S.100 services using sessions.  Client applications running on the same host as the server use the same session API as clients applications running on remote hosts.  The AIA’s implementation of the connection between client and server may change, but the API and applications utilization of sessions are the same in all cases.

A Session allows validation and assignment of privileges to an application.  The AIA implementation may use the native security mechanism of the host operating system to provide this function.

A Session provides a context within which S.100 objects can be created and manipulated.  The session can be considered to be the owner of all objects (i.e. Groups) which are created through it.

The Session API defines operating system independent mechanisms for accessing S.100 Services and managing Event delivery.  The consistent programming model enhances application portability.

Events�xe "event"� are delivered and queued on a per-session basis.  Therefore, the functions that control the delivery of Events are also presented in this section.  As exception handling is simply a special form of event handling, the exception handling functions will also be presented in this section.



�autonumlgl �	Function Summary�xe "session management:function summary"�

�autonumlgl �	Session Management Functions

These are the basic functions for establishing and managing a connection to an S.100 server. 

Table � SEQ Table \* ARABIC �15�:  Summary of Session Management Functions

Function Summary�Description��CTses_Create( Session, ACT, ProfileName, ParmList, TranInfo, Mode )�Create a new Session��CTses_Destroy( Session, ParmList, TranInfo, Mode )�Destroy a Session��CTses_GetParameters( Session, Keys, Keycount, ParmValues, TranInfo, Mode)�Get Session parameters��CTses_SetParameters( Session, ParmList, TranInfo, Mode)�Set Session parameters��CTses_Stop( Session, TransactionID, ParmList, TranInfo, Mode)�Stops transaction on Session���autonumlgl �	Event Management Functions

These functions define the interface for event processing.  These functions are AIA-local and operate only in synchronous mode.

Table � SEQ Table \* ARABIC �16�:  Summary of Event Management Functions

Function Summary�Description��CTses_CreateHandler( Handler, Session, Match, Handlerp, HCT, TranInfo )�Enable Event handler��CTses_DestroyHandler( HandlerID, TranInfo)�Disable Event handler��CTses_PutEvent( Session, Event, TranInfo)�Deliver Event to local session��CTses_WaitEvent( Session, Event, Timeout, TranInfo)�Get next Event from session��

�autonumlgl �	Service Registry and OSU Functions

These functions provide a generic access mechanism to other S.100 based services in an S.100 server.

Table � SEQ Table \* ARABIC �17�:  Summary of Service Registry/OSU Functions

Function Summary�Description��CTses_ImportRTC(Session, RTCName, RTCkvs, TranInfo, Mode�Import an RTC from the application profile��CTses_OSU( Session, Target, UpdateMode, Keys, Keycount, ParmList, TranInfo, Mode)�Set or modify OSU interests.��CTses_FindService( ServiceID, Session, ASI, ParmList, TranInfo, Mode)�Find a service named by ASI��CTses_RegisterService( Session, ASI, ParmList, TranInfo, Mode)�Add session/ASI to the service registry��CTses_ReleaseService( ServiceID, ParmList, TranInfo, Mode)�Release a service handle��CTses_SendMessage(Target, ParmList, TranInfo, Mode)�Send message to target object��CTses_UnRegisterService( Session, ASI, ParmList, TranInfo, Mode)�Remove session/ASI from service registry���autonumlgl �	CTtranInfo Helper Functions

These functions and macros provide assistance for creating and using the CTtranInfo data structure in APIs.

Table � SEQ Table \* ARABIC �18�:  CTtranInfo Helper Functions

Function Summary�Description��CTtrn_Initialize(tranInfo, kvsEvent)�Initialize a CTtranInfo structure to use a KVSet as its event return��

Session Management Overview�xe "session management:overview"�

Sessions are created to provide a context for ownership and event delivery. Commands are sent from the application to the server via a session and events return via the session to the application’s event queue.  The events may be accessed using CTses_WaitEvent() or they may be processed asynchronously using event handlers attached to the session.

Session Management provides the following services:

It creates and maintains links between client applications and S.100 Servers.

It provides an authentication service (using the native authentication service of the host OS).

It provides event management (notification and delivery) services for the client application.

It provides a context within which an application can request services from other object, or provide services to other objects.

It allows applications to monitor activities in other S.100 objects using OSU (Object Status Update) Notification.

�autonumlgl �	Session Creation and Destruction�xe "session management:session creation and destruction"�

The application may creates one or more sessions to a server by invoking the function CTses_Create().  The function returns a handle to a session object, which may thereafter be used in other APIs as a context for sending commands and receiving events.

When a session is no longer required, the application may delete it via CTses_Destroy().  When a session is destroyed, all operations based on that session are terminated.

�autonumlgl �	Sessions and Authentication�xe "session management:authentication"�

Depending on the application’s operating environment, the AIA and the messaging technology being used, the application may be required to present authentication credentials when creating a session.  These credentials may be compiled into the program and supplied to the AIA in the parmList of CTses_Create().  Alternatively, the credentials may be supplied to the AIA by the local administrator when the AIA or application is installed and configured.  The AIA for a particular server and operating environment will document which options are available and the parameter keys used to provide the credential information.

Although credentials may be presented in each invocation of session create, the AIA is empowered to cache those credentials and may multiplex several sessions using the same authenticated connection to a server.

Session creation is intended to be fairly lightweight.  While a single session per application is sufficient, it is not unreasonable to create a session for each call or other service offering.  

�autonumlgl �	Session Transactions�xe "session management:transactions"�

Commands and completion events are monitored by the session mechanism.  This guarantees the pairing of commands with their completion response.  This allows the application to stop a transaction (i.e., the process started by the command and completed when the completion event is issued) in progress.  The session will deliver the stop request to the appropriate object to cancel the request.

�autonumlgl �	Session Parameters�xe "session management:session parameters"�

Sessions, like Groups, System Services, and other objects, support parameters.  The properties that are governed by session parameters are usually properties which do not change during the execution time of an application, but which need to be settable on an individual application basis.

� AUTONUMLGL �4.3.�	Event Management Services�xe "event management services" \b��xe "services:event management services" \b�

This section describes the services available to applications to support the notification and delivery of events.

The S.100 Event management functions allow the application to filter and route Events from the Server.  It is not the intent of this API to be the sole Event filtering mechanism; this API only filters events that have been delivered from the server to the client AIA.  To reduce traffic on the client/server connection the application should disable any unnecessary Events at the Resource using the appropriate Resource functions or parameters.

�autonumlgl �	Overview of Events�xe "event:overview"�

An Event is a message that notifies the application of a noteworthy occurrence.  Events may be sent in response to a command issued by the application, to indicate errors occurring during the execution of a program, or to notify the application of some change in the external environment (or of an internal hardware failure).

All events have the same standard attributes�xe "Events:standard attributes"� which describe the message components available in all messages.  These attributes identify the source of the message, the destination of the message, and the purpose of the message.  Names for error-reporting components are included in the standard attributes so that all object use the same error reporting conventions.

Event information is delivered in a Key Value Set (KVSet) (See Chapter 3 for more details on KVSets.).  The standard attributes can be examined using KVSet functions.  

The information provided in an Event may be extended as required by the generator of the Event (e.g., a Resource within a Resource Group). 

Completion events�xe "event:completion event" \b��xe "completion event" \b�

An event sent in response to a command issued by an application is referred to as a Completion Event. If the command was successful, it contains all output data requested by the command (the command-specific information returned is documented in the Function Definition section for each function).  If the command failed for some reason, the event will contain information describing the error. In every case, completion events will contain a transaction ID so the application can match the event to the corresponding command.

The S.100 framework provides a synchronous mode for functions to hide completion events and much of the “remote transactions” nature of the system.

Unsolicited Events�xe "unsolicited event"��xe "event:unsolicited event"��xe "general event"��xe "event:general event"�

An event that is not a completion event is referred to as a general event or an unsolicited event.  These are generated by a system service or resource with which an application is interacting.  An unsolicited event notifies the application of occurrences not directly associated with a particular command. 

To simplify the process of watching for unsolicited events, the S.100 framework defines event handlers. �xe "event handler"��xe "event:event handler"�  Event handlers can be positioned outside the main line of code and invoked automatically when particular events are delivered.  Unsolicited events can also be processed using CTses_WaitEvent().

�autonumlgl �	Standard Event Attributes �xe "event:attributes"��xe "event attributes"�

The following table documents the standard attributes of an event message: the Key by which the attribute is accessed, the value type for that Key, and a brief description of the meaning of the attribute.

Table � SEQ Table \* ARABIC �19�:  Standard Event KVPairs

Key Name�Type�Description��Message_ECTF_EventID�CTsymbol�Identifies the nature and purpose of this Event��Message_ECTF_EventQualifier�CTuint�Qualifier (i.e., a sub-event ID) for the Event.��Message_ECTF_ObjectID�CTcls_ct�Handle of the Object that generated the Event.��Message_ECTF_ObjectClass�CTuint�Class of the Object that generated the Event.��Message_ECTF_SessionID�CTses_ct�Handle of the Session to which the Event was delivered��Session_ECTF_ACT�void*�Application Context Token for this session��Message_ECTF_Status�CTstatus�Completion status indicating success or the severity of a failure��Message_ECTF_Error�CTerror�In case of failure, the error number (symbol) of the failure��Message_ECTF_SubError�CTuint�In case of failure, the sub-error number of the failure��Message_ECTF_TransactionID�CTuint �Transaction ID of a Transaction.�value is CT_uintNOTRANSACTION for unsolicited events��The session the event was generated on is identified by the value of the Message_ECTF_SessionID  key.  This is useful if the application has created multiple sessions and wants to identify which session generated the event.

The Message_ECTF_Object key allows the application to get a handle to the Object that generated the Event (e.g., the Group handle).

The Message_ECTF_ObjectClass key allows the application to find out the Class of the Object that generated the Event (e.g., Group Class).

The actual Event is identified by the value of the Message_ECTF_EventID key.  The interpretation of the Event ID is dependent on the Object that generated it.

Depending on the Event ID and the service provider generating the event, additional information may be required for complete event identification.  For example, a Play operation could have completed for a number of different reasons, such as receiving a Stop command from the application.  The Message_ECTF_Qualifier key is used to provide this additional sub-Event ID information.

The Key Message_ECTF_Status denotes a successful operation or an exception..  This key can take the values CT_statusOK, CT_statusWARNING, CT_statusSTARTED, CT_statusFAIL or CT_statusFATAL.

If Message_ECTF_Status is set to some other value than CT_statusOK or CT_statusSTARTED, then the value of the Message_ECTF_Error key will describe the specific warning, failure or fatal condition.

Depending on the error and the service provider generating the event, the value of the Message_ECTF_SubError key may contain additional error information.

A Transaction ID is assigned for each function call that generates a completion Event.  This allows the AIA and the application to unambiguously recognize the completion event associated with a command request.  The transaction ID assigned to the command or request is returned immediately in the tranInfo structure and is also included in the completion event as the value of the Message_ECTF_TransactionID key.  

If an event is not a completion event, but instead  is an unsolicited event, the TransactionID will be the special value CTses_uintNOTRANSACTION.

�autonumlgl �	Event-Specific Information �xe "event:event-specific information"�

In addition to these standard Key Value pairs, any additional Event-related data can be included by the generating Resource or System Service as part of the event.  These extended keys are named as follows:

Obj_ECTF_ItemName

(e.g., CCR_ECTF_CallID).

�autonumlgl �	Event Documentation Convention�xe "event:event documentation convention"�

Within this specification, Events may be documented as C functions.  The function name corresponds to the EventID, and the other arguments correspond to other event attributes of interest.  For example:

event_name(attributekey1, ...)

event_name(attrtype1 attributekey1, ...)

where event_name is the symbol identifying the EventID, and the arguments attributekeyn are the Keys of additional KVPs that are returned in the event KVSet.  For example, The CCR resource event CCR_ECTF_ChangeState, in addition to the standard KVPairs, also returns a KVPair CCR_ECTF_State. Its representation in this document would be:

CCR_ECTF_ChangeState ( CCR_ECTF_State, eventKVS)

In text and when the context is unambiguous, the EventID may be shortened by eliding “Obj_ECTF_” and using just the ItemName.  For example the event above could be referred to as the ChangeState event.

�autonumlgl �	Status values�xe " status value"��xe "functions:return value"�

As indicated above, the S.100 framework defines the Message_ECTF_Status key as part of the standard information provided with every Event.  The Status key is used by the service providing object generating the Event to indicate its type.

Since the action an application takes often differs depending on whether an event represents a warning, an error or an exception, it is desirable to allow the application to partition its fault handling code based on the event status.  Thus the application may use the Status key as all or part of its matching criteria when creating Event Handlers.

Normal �xe "normal status"��xe "functions:normal return value"�

CT_statusSTARTED indicates that an asynchronous transaction has been initiated successfully.

CT_statusOK indicates that a transaction has completed successfully, or that an unsolicited event is of an informational nature.

Warnings�xe "warnings"� �xe "functions:warning return value"�

CT_statusWARNING indicates that a transaction has completed successfully but experienced an unusual occurrence, or that a General Event is of a warning nature.  A warning implies that the object generating the warning is functioning correctly, but is intended to flag a possible application error, or a possible later object error or exception.

Errors�xe "errors"��xe "functions:error return value"�

CT_statusFAIL indicates that a transaction has experienced an error, or that a General Event is reporting an error.  An error is directly related to the generic functionality of an object and not to its implementation.  For example, in a generic data storage API an application may receive notification from the object indicating that it is full.  While this is clearly a fault, it is one that an application should reasonably expect.  Hence it is reported as an error.

Exceptions�xe "exceptions"��xe "API:exceptions"�

CT_statusFATAL indicates that a transaction has experienced an exception, or that a General Event is reporting an exception.  An exception is a fault that is related to a particular implementation of an object.  For example, in the same generic storage API an application may receive notification from the object indicating that the disk controller has failed.  Since the disk controller is directly related to the implementation of the storage object, an exception is generated.

� AUTONUMLGL �4.3.6.�	Basic Event Processing Overview�xe "event:event processing overview"�

The basic event processing scenario follows three phases:

When an event is received by the AIA, it is directed to the appropriate session and queued for processing.   The event is not processed further until the application calls CTses_WaitEvent() for that session.

When CTses_WaitEvent() is called, each un-handled event for the session is matched against the event handlers installed on the session.  If a matching handler is found, the handler is invoked.  After all applicable handlers have run, the event has either been destroyed by a handler, or it is queued for access by CTses_WaitEvent().

When all events have been processed by the event handlers, CTses_WaitEvent() returns the oldest event in the queue.  If no event is in the queue, CTses_WaitEvent() waits for an event, repeating phases 1 and 2. 

All events to a single session are processed in the same relative order that they are received by the AIA.  However, there is no serialization enforced between sessions.  The events for session-1 may be processed before events for session-2, even if they were received later.

Using CTses_WaitEvent()

When a session is created, an event queue is created and associated with the session.  When events are read from the server transport, the AIA examines the SessionID of the event and dispatches it to the event queue for that session.  Events are removed from the queue and handed to the application when the application calls CTses_WaitEvent().  In a simple application model, that is all the application needs to do; loop to remove each event and process it.

Using Event Handlers�xe "event handler:using event handlers"�

The application may also create one or more more event handlers for the session.  Each event handler is created with a “matching criteria” that determines which events should invoke that handler.  An event handler is invoked by the AIA to examine and process an event before the event is returned to CTses_WaitEvent.  In addition to doing application specific processing based on the event, event handlers can also destroy the event.  Once destroyed, additional handlers are not invoked and the event is never returned to CTses_WaitEvent.  

Event handlers have an explicit order of application; they are invoked in the reverse order in which they were created.  The first handler created (the default handler) is the last to be invoked, and will generally destroy all events that are not of interest to the application.  Handlers created later will be invoked earlier, giving them a chance to process or modify the event. 

Handling completion events in SYNC mode. �xe "synchronous mode"��xe "mode:synchronous mode"�

The application writer may think of API functions in synchronous mode as if internally they (optionally) established event handlers, and then called the function in asynchronous mode, and then called an “internal” CTses_WaitEvent().  The “internal WaitEvent”  mechanism is referred to as a synchronizing facility.  Any installed event handlers that match the completion event are given a chance to handle the event, after which the event is handled by the synchronizing facility - thus preserving the order that event handlers and CTses_WaitEvent() observe.

The difference between this procedure and the procedure followed for asynchronous functions and CTses_WaitEvent() is that the synchronizing facility displays a preference for the function’s completion event.  That is, if a function is called in synchronous mode, when its completion event arrives in the client’s event queue, even if it is not at the front of the queue, its handlers may be called and the function unblocked before handlers and CTses_WaitEvent() are processed for the events ahead of it.

Multi-Thread Issues�xe "multi-thread issues"��xe "event:multi-thread issues"�

If an application creates multiple threads, then it must take care to synchronize access to sessions and events.  A simple technique is to ensure that each thread has its own session or sessions for communicating to a server, and no two threads use the same session.  

Before allowing multiple threads to call AIA functions, one must insure that the AIA being used is designed for use by multiple threads.  If not, then the application must lock its entry into the AIA so that only one thread at a time calls any AIA function.  If the AIA is thread-safe, then there should be no further restrictions.

If multiple threads call CTses_WaitEvent() for the same session, then the handlers for that session may be running in multiple threads concurrently.  The application must be aware that completion events will not necessarily be handled by the thread that initiated the transaction.  In a properly programmed application that uses locks appropriately, this should not be a problem. 

A particular AIA may simplify multi-thread support (at the expense of performance on multi-processor machines) by internally locking to ensure that only one thread is ever active in the AIA.  If the AIA takes this approach, then the application is relieved of worrying about handlers running concurrently.

The application must also be aware that getting this all correct requires extreme care.  Check the AIA documentation to see how multiple threads are supported in the AIA.

�autonumlgl �	Event Handlers�xe "event handler" \b�

An event handler defines a function that is executed when an event matching certain criteria is received in an event queue. Represented as a C function prototype, an event handler is a function such as

CTstatus MyEventHandler(CTkvs_ct event, void* HandlerContextToken);

Typically, the handler context token is a pointer to an application defined structure which supplies additional arguments or context for the handler function.  The context token allows the same function to be used in several handlers. 

Event handlers are run only when CTses_WaitEvent() is called.  If the application does all of its processing in handlers (i.e. in callbacks), the main line code should loop calling CTses_WaitEvent() with no timeout.  CTses_WaitEvent() will return any  events that are not destroyed by the application’s handlers.  The CTses_WaitEvent() loop can then log and dispose of those events that survived the handlers.

Event handler operation

Event handlers are called in the reverse order of creation.  In other words,  a more recently created event handler runs before an event handler created earlier. 

Each handler is considered only once, the match KVSet of the handler is matched against the event’s current contents.  If the event is modified by a handler, subsequent event matching of subsequent handlers may be affected, but prior handlers to be re-matched.  To invoke prior handlers, a handler can copy, modify and resubmit the new event using CTses_PutEvent().

Event handlers return type CTstatus. If the handler returns CT_statusOK, the Event is passed to additional matching handlers, or placed in the session’s event queue.  If the handler returns a value of CTses_statusDESTROY the Event will be destroyed, no other Event handler will be called and the event will not be queued.

The session argument must indicate a valid session object handle and may not be set to CTses_sesANY. 

Matching Criteria�xe "matching criteria"��xe "event handler:matching criteria"�

When an event handler is created for a session, the application may specify “matching criteria” for selecting or filtering the events to be processed by that handler.

A selection criterion is a KVPair in which the Key is one of the keys returned in an event (i.e., either one of the standard fields or an appropriate event-specific field) and the value is the desired matching value. Multiple criteria are selected by specifying a KVSet with multiple KVPairs.  The handler is selected for processing an event only if all the selection criteria are matched by the event.  The application can specify a variety of matching criteria including but not limited to the following:

The ObjectID that originated the Event

A specific EventID

A specific transactionID for a completion Event

A particular value of a Key within the Event

Matching on SessionID is possible, but is generally redundant, since each handler is created to service events from only a single session.

CTses_CreateHandler() has an input argument for the selection or matching criteria. If this argument is set to CT_kvsNULL, every event will qualify for a match. If the KVSet contains multiple KVPairs, an event must match all the pairs to constitute a match.  That is, the selection criteria are a set of restrictions that are ANDed together.



�autonumlgl �	CTtranInfo Struct�xe "transaction information"�

Event information pertaining to the status of a server API invocation is returned to applications in an output argument CTtranInfo (as described in Section 3.3.2). This struct contains as one of its members a KVSet (eventData) containing event information as described within Section 5.3.2, and non-KVSet data members which contain copies of this information. The CTtranInfo struct is initialized by the application writer prior to use in an API, and its members are set by the API prior to return to the application.

The use of the CTtranInfo struct to return transaction information is a compromise between the flexibility of a KVSet and the efficiency of a C struct. The data members of the CTtranInfo struct represent the information most frequently extracted from an event KVSet. Its definition is: �xe "CTtranInfo" \b�



typedef struct {

   CTuint size;

   CTkvs_ct eventData;

   CTsymbol eventID;

   CTuint qualifier;

   CTdm_ct objectID;

   CTuint objectClass;

   CTses_ct sessionID;

   void *sessionACT;

   CTstatus status;

   CTerror error;

   CTuint suberror;

   CTuint tranID;

} CTtranInfo;��Figure � SEQ Figure \* ARABIC �7�:  CTtranInfo Struct Definition

As can be observed in the above figure, many of the fields correspond to the standard event KVPairs of Table 18, while others correspond to API-specific data, which are valid only for those APIs that return this information in their completion events.

A macro CTtrn_initialize() is provided to assist an application writer in correctly initializing the tranInfo struct.

A typical use of the tranInfo structure in an application is presented below:



CTkvs_ct eventData;

CTtranInfo tranInfo;

CTerror error;



CTkvs_Create( eventData, &error);  /*create the KVSet used in the struct*/

CTtrn_Initialize(tranInfo, eventData); /*initialize the struct*/

. . .

/* use of Server APIs*/

. . .

CTkvs_Destroy( eventInfo, &error);��Figure � SEQ Figure \* ARABIC �8�:  Use of CTtranInfo structure



� AUTONUMLGL �4.4.�	Application Provided Services�xe "services:application provided services"�

In the S.100 framework, a system service is an object to which applications can send service request messages and which responds to these requests.  The S.100 Session API allows an application process to establish itself as a system service. By using this technique, an application itself as an addressable object in the system with a “well-known address” similar to the “well-known address” of the standard system services�.

An application registers itself as a service using �xe "functions:CTses_RegisterService()"�CTses_RegisterService(session, ASI, parmList).  The ASI defines the “name” of the service,  and the parmList indicates additional capabilities or restrictions of the service.  

Other sessions access a service using �xe "functions:CTses_FindService()"�CTses_FindService(Session, ASI, ParmList).  The ASI names the requested service, and ParmList contains additional constraints or requirements for the service.  If several service providers are available for the same ASI, the parmList can indicate which one should be used.  The session handle of a registered session that matches the ASI and requested parmList is returned.  Thereafter, the application can send messages to that service using CTses_SendMessage.  The message content (including the use of EventID and other standard message components) and the returned event contents and semantics are determined by the service and its published interface.

CTses_SendMessage() can be used to send messages to any valid server-based object handle.  Most commonly that is for registered application services, but CTses_SendMessage() can also be used to send non-standard or extension messages to Groups or other standard objects for which the application has a handle.

� AUTONUMLGL �4.5.�	Object Status Update (OSU) �xe "Object Status Update (OSU)"��xe "OSU" \t "see Object Status Update"�

The Object Status Update (OSU) interface allows applications to retrieve and monitor the values of  selected parameters maintained by various objects in the system.  Once a session registers interest in a one or more named values maintained by such an object, the object sends events to the session any time that value changes.  

Conceptually, each supporting object documents a KVSet that indicates the values that can be monitored and the key names for each value.  An application notifies the object that it is interested in one or a list of keys, and whenever the associated KVPair is changed or deleted, the application is automatically notified. 

To use the OSU interface, an application must have a handle to the object.  Typically this is a Group that the application owns or a service handle returned from CTses_FindService().  The OSU monitoring continues until the application retracts the request or until the object is destroyed.  A session that is registered for OSU events will receive an event if the object is destroyed.

An OSU request is registered via the function �xe "functions:CTses_OSU()"�CTses_OSU(), specifying the object handle (e.g., type CTobj_ct) and an array of Keys that name the values in which the application is interested.  The function call also indicates whether the application wants a continuous monitor or just a one-time snapshot of the values.

The object responding to the OSU does so by sending the event Session_ECTF_OSU which includes the KVPairs in which the interest was registered.

Whether an object supports OSU and the particular KVPairs available are documented by each object.  The semantics of when the KVPairs are updated or deleted are also specific to each object.  For example, if a Group object may delete a KVPair representing a value maintained by a resource (e.g., Player_ECTF_Volume) when that Resource is removed from the Group. 

Deleting a KVPair does not remove the interest registration for that KVPair. If the KVPair is later added, the application will be notified of the new value.  The interest and the KVPair have independent lifetimes.  An application may express interest in a KVPair that does not currently exist, and be informed later when that KVPair is added.  However, if the application expresses in interest in a KVPair that the object does not allow, that interest will cause a warning, and the interest will be otherwise ignored.  



� AUTONUMLGL �4.6.�	Importing RTCs�xe "runtime control:importing RTCs"�

A Run Time Control is, as described earlier, a mechanism allowing one resource to control an active operation on another resource when a triggering condition is detected. An RTC affects only an active operation, and is installed by supplying it (expressed as a KVSet) as an argument to a resource operation.

As a convenience to the application developer, an RTC may be defined in the application profile, and imported from the application profile to a KVSet by use of the function CTses_ImportRTC(). An imported RTC may be manipulated in the usual manner by KVSet functions.

�autonumlgl �	Definitions

�autonumlgl �	Session Parameters

The application may examine and/or set the values of several parameters.  These parameter may effect the services that are accessed via the Session.  

The following standard parameters are defined.



Table � SEQ Table \* ARABIC �20�:  Session Parameters

Parameter�Type�Definition��Session_ECTF_��<none currently defined>���autonumlgl �	Session Errors

All errors listed below are of type CTerror.



Table � SEQ Table \* ARABIC �21�: Session Error Codes

Error Code Name�Description��CT_errorBADGROUP�Bad Group��CT_errorBADPARM�Bad Parameter��CT_errorBUSY�Server unable to service request��CT_errorSYSTEM�System error occurred during execution��CT_errorTIMEOUT�Function was not completed in specified time��CT_errorBADRTC�Invalid Run Time Control Object��CTses_errorBADEVENT�Event invalid or not created by CTses_WaitEvent()��CTses_errorBADPARM�Invalid parameter in parameter list��CTses_errorBADSERVER�Bad Server name��CTses_errorBADSESSION�Bad Session Handle��CTses_errorCOMMS�Communications failure��CTses_errorNOCONNECTION�No connection with a Server exists��CTses_errorCONNEXISTS�A connection to server already exists��CTses_errorDUPHANDLER�Duplicate Handler specified��CTses_errorHANDLERNOTFOUND�Handler not found��CTses_errorNOPROFILE�Missing profile information��CTses_errorQUOTA�Quota exceeded��CTses_errorREFUSED�Refused permission��CTses_errorBADTARGETSESSION�Invalid Session Handle specified as target of event.��CTses_errorBADOBJECT�Invalid Object Handle specified.��CTses_errorServiceDefined�Attempt to define a service whose ASI is already registered��CTses_errorServiceNotDefined�Attempt to unregister a service whose ASI is not registered��CTses_errorTRANSSTOPPED�Transaction was stopped using CTses_Stop��CTses_warnNOTRANSTOPPED�The requested transaction could not be stopped.��Unsolicited Session Events

�xe "event:unsolicited session events"�

Session_ECTF_OSU�ParmList contains updated values��Event specific keys�Value Type�Description��Message_ECTF_ParmList�CTkvs_ct�Updated values for each KVPair��OSU_ECTF_Mode�CTuint�Specifies OSU_ECTF_Update or OSU_ECTF_Deleted��

Session_ECTF_Destroy�Object ID is no longer available��Event specific keys�Value Type�Description��None specified����

�autonumlgl �	Function Return Status Definitions

The standard CTstatus values apply to the functions in this API.  The status value listed below is also defined for this API.



Table � SEQ Table \* ARABIC �22�: Session Functional Return Values

Constant Name�Type�Description��CTses_statusDESTROY�CTstatus�Handler indicates that Event is to be destroyed���autonumlgl �	Miscellaneous Constants



Table � SEQ Table \* ARABIC �23�: Session Miscellaneous Constants

Constant Name�Type�Description��CTses_sesANY�CTses_ct�Wait on any Session created by this application when using CTses_WaitEvent()��CTses_uintALLTRANSACTIONS�CTuint�Match any transaction on Session for CTses_Stop() function��CTses_uintNOTRANSACTION�CTuint�Message_ECTF_TransactionID value: not a transaction��CTses_evthdlrNULL�CTevthdlr�NULL Event Handler value��CT_kvsNULL�CTkvs_ct�NULL KVSet value��CT_symbolarrayNULL�CTsymbol[]�NULL value for CTsymbol array��CTses_uintGROUP�CTuint�Message_ECTF_ObjectClass Group value��CTses_uintSESSION�CTuint�Message_ECTF_ObjectClass Session value��CTses_uintCONNECTION�CTuint�Message_ECTF_ObjectClass Connection value��CTses_uintCONFERENCE�CTuint�Message_ECTF_ObjectClass Conference value��CTses_intWAITFOREVER�CTint�Infinite value for CTses_WaitEvent() timeout argument����autonumlgl �	Session Function Definitions�xe "functions:session function definitions"�



CTses_Create�Create a new Server Session��Name:�CTstatus CTses_Create( Session, ProfileName,  ACT, ParmList, TranInfo, Mode)��Input:�CTstring�ProfileName�Name of Profile for this session���(void*)�ACT�Application Context Token��Output:�CTses_ct*�Session�Handle of returned session object��Standard�CTkvs_ct�ParmList�Additional parameters���CTtranInfo*�TranInfo�Transaction Information structure pointer���CTmode�Mode�Mode of operation��Return:�Standard synchronous CTstatus values. ���Description

This function creates a Session Object and connects it to an S.100 server.  A Session Object is created in two phases.  First the AIA creates its internal data structures (including the event queue for the session), then the server is contacted, (authenticating the application if necessary) and a session is established to the server.  When called in asynchronous mode, this function returns after the AIA local phase is finished.

Arguments

ProfileName is a string that identifies the file that contains the Application Profile for this session.  As part of the session creation protocol, the Application Profile (or its contents) is made available to the server.  The content, format and utilization of the Application Profile are explained in detail in Appendix A.  

Typically the Application Profile contains quasi-static information about the application that is more easily expressed in the Application Profile syntax, rather than in C code.  The Application Profile can generally be modified by the system integrator or system administrator to integrate the application to a particular installation without modifying the application binary

ACT is an application supplied value that identifies the new session.  The ACT may be any type of value, it is not used by the S.100 system except that it is returned in all events from this session.  Typically the application may use this to point to an application specific context structure.

ParmList contains additional, AIA specific, information for creating the session, its event queue, handlers, and the associated connection to a server.  The extra parameters in ParmList may control the allocation of session to new or existing communication links to a server. If authentication information is necessary that is also supplied in ParmList  (see below).  AIA developers are strongly encouraged to ensure that suitable defaults apply so that session create will work if ParmList is empty.

Return values

When CTses_Create() returns successfully, a session object has been created and the handle of the Session Object is returned in the completion event, as well as in the output variable Session.  The new session may be used to create Event handlers.  

The new Session is not valid for communicating to the server until after the completion event has been processed.  That is handled automatically in SYNC mode.  In ASYNC mode, the handle is returned immediately, but if it is used for any server operation, the request will fail with CTses_error_BADSESSION. 

In the case of failure TranInfo may be examined to determine the cause.

Server connections and authentication

The name of the server to contact and authentication information for connecting to that server are implementation details of the AIA/Server environment.  That level of information may be supplied in the Application Profile, may be supplied by the administrator when the application and AIA are installed, or may be required in the CTses_Create() ParmList.  Alternatively, an AIA may specify that an external authentication API should be used in which case the result of that authentication process should be passed to session create.

If your application will have a choice of servers or will utilize more than one server, consult the AIA documentation to determine how to direct sessions to various servers.

S.100 defined the following keys as standards to be used for accessing remote servers.  Typically these will be supplied in the parmList or Application Profile:



Key�Type�Description��Session_ECTF_ServerName�CTstring�Name of server to use for this session��Session_ECTF_AuthType�CTstring�Identify type of authentication application expects to use��Session_ECTF_AuthToken�CTuintArray�Pointer to binary authentication structure (AIA specific)��Session_ECTF_UserID�CTstring�Identify a “user ID” ��Session_ECTF_Password�CTstring�Password��Completion Event

The completion event from the server contains the server’s SMPA for this session.  That is interpreted by the AIA, and is cached in the structure represented by the Session Handle returned by CTses_Create().  The completion event seen by the application indicate that the session is now ready for client-server communication.  If the server fails to create the session, the application immediately receives an unsolicited CTses_Destroy() event.  In SYNC mode, these events may be condensed and a simple failure returned.



Session_ECTF_Create�Session Created��Event specific keys�Value Type�Description��None specified����

Cautions

The new Session is not valid for communicating to the server until after the completion event has been processed.  

The Handle returned by this function is only valid inside the process in which this function was called.



Errors

CT_errorSYSTEM	(	System error occurred during execution of this function

CTses_errorCLIENTFAILED	(	Client AIA was unable to do its part in creating a session.

CTses_errorSERVERFAILED	(	Server connection failed



CTses_CreateHandler�Create an Event Handler��Name:�CTstatus CTses_CreateHandler( HandlerID, Session, Match, Handlerp, HCT, TranInfo )��Input:�CTses_ct�Session�Session ID���CTkvs_ct�Match�match criteria���CTevthdlr�Handlerp�Pointer to handler function���(void *)�HCT�Handler Context Token��Output:�CTuint*�HandlerID�ID for handler when calling CTses_DestroyHandler()��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer��Return:�Standard synchronous CTstatus values. ���Description

This function creates an Event Handler which is a  callback function for selected events on the session.

Arguments

Session identifies the session and therefore the event queue for which events will be handled.  

Match is a KVSet that can be used to select which events should be processed by the handler function.  Match is a set of restrictions which must be fulfilled by an event; if all the KVPairs in Match are in an event, then that event is passed to the handler function.  If match is CTkvs_NULL, then all events match and all events are passed to this handler.  Matching is processed by CTkvs_Match(), the specifics of matching are documented there.

Handlerp is a pointer to the handler function.  Handlerp satisfies the prototype

CTstatus Handlerp(CTkvs_ct event, void* HCT);

HCT is an application defined token which is passed to the handler when it is called.  Typically HCT is a pointer to an application defined structure which supplies additional arguments or context for the handler function.

Return Value

If the same tuple of <match, handlerp, HCT> already exists for this session, CTses_CreateHandler() returns an error status.  However, it is legal to use different matching criteria for the same handler function, or to use different handler functions for the same matching criteria.

Cautions

When disabling handlers, you must call CTses_DestroyHandler() with the handlerID returned by CTses_CreateHandler().  When the Session is destroyed, all handlers enabled for that Session will be destroyed automatically.

If CTses_CreateHandler() is called and a handler is already enabled for the same matching criteria and handler, an error status is returned.

The Handle returned by this function is only valid inside the process in which this function was called.

Completion Events

None.  This function operates only in synchronous mode.  Error values are returned in TranInfo.

Errors

CTses_errorDUPHANDLER	(	Duplicate handler specified

CT_errorBADSESSION	(	A bad session ID was supplied

CT_errorSYSTEM	(	System error

CTses_Destroy�Destroy a session��Name:�CTstatus CTses_Destroy (Session, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Session to be destroyed���CTkvs_ct�ParmList�Additional or extension parameters��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer��Return:�Standard CTstatus values. ���Description

This function destroys the specified session.  The process of destroying is roughly the reverse of creating the session.  

The AIA sends the Destroy command to the server and marks the session as invalid for further server commands.

The server destroys the server structures, Groups, OSU or services associated with this session.  The server sends the CTses_Destroy() completion event back to the client application.  

The AIA leaves the session handle and event queue intact until the Destroy completion event is processed by the application. 

When the completion event arrives from the server, all outstanding transactions are stopped, the completion events will indicate that the transactions were stopped because the session was destroyed.  The Destroy event is then passed to the event processing system for session.  When the completion event has been processed, that is, when an event handler or CTses_WaitEvent() destroys the event, the session handle is marked invalid and AIA components of the session are destroyed.

Arguments

Session identifies the session to be destroyed.  This function will succeed if Session is valid in the AIA. It will succeed even if Session is not valid for server operations.

ParmList is available for extensions.

Return values

The function returns CT_statusOK to indicate that the function has completed successfully.  It will also return CT_statusFAIL to indicate the function has terminated with an error.  In this case the output Transaction Information handle, TranInfo, will contain the reason for the failure.

Cautions

After this function is complete, the handle will no longer be a valid reference to this object.  Further, the S.100 API implementation may re-use this handle.  Thus, using this handle after this function has completed will, at best, result in an error;  in some cases it may succeed,but with unexpected, and potentially disasterous, side-effects.



Completion Event



Session_ECTF_Destroy�Session object destroyed)��Event specific keys�Value Type�Description��None specified����Unsolicited Events

Session_ECTF_Destroy may also be an unsolicited event.  For example, the server or AIA may initiate destruction of a session due to a system error or communications failure.  In that case, the AIA marks the session handle as invalid for server operations and passes the event through the event processing system.  When the event is destroyed, the session handle is marked invalid and AIA components of the session are destroyed. 

Cautions

The session handle of this session is invalid after this function completes.

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error prevented completion

CTses_errorBADSESSION	(	A bad session ID was supplied

CTses_DestroyHandler�Destroy an Event Handler��Name:�CTstatus  CTses_DestroyHandler( HandlerID, TranInfo )��Input�CTuint�HandlerID�Handler ID returned from CTses_CreateHandler()��Output�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer��Return:�Standard synchronous CTstatus values. ���Description

This function destroys the specified event handler.  HandlerID must have been obtained from a previous call to the CTses_CreateHandler.

This function runs only in synchronous mode.  The function will return CT_statusOK to indicate that the function has completed successfully.  It will also return CT_statusFAIL to indicate the function has terminated with an error.  In this case the output Transaction Information handle, TranInfo, will contain the reason for the failure.

Completion Events

None.  This function operates only in synchronous mode.  Error values are returned in TranInfo.

Cautions

After this function is complete, the handle will no longer be a valid reference to this object.  Further, the S.100 API implementation may re-use this handle.  Thus, using this handle after this function has completed will, at best, result in an error;  in some cases it may succeed,but with unexpected, and potentially disasterous, side-effects.

Errors

CT_errorBADPARM	(	Invalid parameter in function call

CT_errorSYSTEM	(	System error

CTses_errorBADOBJECT	(	Nonexistent object specified.

CTses_FindService�Find service named by ASI��Name:�CTstatus CTses_FindService(ServiceID, Session, ASI, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Session of server where registry is to be searched���CTstring�ASI�Application Service ID of requested service���CTkvs_ct�ParmList�Additional attributes for selecting a service��Output:�CTses_ct�ServiceID�Handle of registered Service��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTuint�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function finds a service that provides the application service named by ASI.  Generally, a service will provide its own API for finding and communicating between applications and the service.  In that case, this function will be used internally by the service’s API, and the application should not need it directly.  This function is included allow applications to easily extend the services supplied by the S.100 framework, without (necessarily) using a particular servers SPI. 

Typically the returned service is an application session that registered using CTses_RegisterService().

If a suitable service is found, the function returns CT_statusOK, and the output argument ServiceID receives a handle for the service. If the ASI is not found, the function returns CT_statusFail and the output parameter ServiceID contains CT_NULL.

Arguments

Session identifies the server on which the requested service should be found.  In addition, when the service is found, all communication with that service will use this session.  It may be advantageous create a session for finding and using each service.

ASI is a string identifying the requested service.  Only services registered under this ASI name will be considered.  The ASI value to use for a particular service can be found in the documentation for that service.  

ParmList is a KVSet of requested attributes that the service should possess. If this argument is not CT_NULL, then the returned service will match its ASI and the attributes in parmList.  The registered attributes of the returned session will be a super set of the attributes requested in parmList..

Completion Event



Session_ECTF_FindService�Service Found��Event specific keys�Value Type�Description��Session_ECTF_ServiceID�CTobj_ct�Handle of remote service��Cautions

If the session providing the service dies, the session that ran CTses_FindService() receives the event Session_ECTF_Destroy(service).

Errors

CT_warningNOTFOUND	(	No matching service is registered

CT_errorSYSTEM	(	System error occurred during execution of this function

CTses_GetParameters�Get Session parameters��Name:�CTstatus  CTses_GetParameters ( Session, Keys, KeyCount, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Session whose parameter values are to be obtained���CTsymbol�Keys[]�List of parameters whose values are to be returned���CTuint�KeyCount�Number of entries in keys��Output:�CTkvs_ct�ParmList�Handle of KVSet to contain returned values��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function gets the current value of Session parameters. 

Arguments

The array Keys[] is an array of CTsymbols naming parameters associated with this session. 

KeyCount is the number of symbols in the array Keys. If KeyCount is zero then Keys is ignored and all parameters are returned. If Keys is NULL then KeyCount is ignored and all parameters are returned.

ParmList is a KVSet to contain the returned values when this function is call in SYNC mode.  The previous contents of ParmList will be replaced by the returned parameter values when the completion event is processed. In ASYNC mode, the returned values are available as a KVSet  in the completion event and the ParmList argument is ignored.

Completion Event



Session_ECTF_GetParameters�Parameters gotten��Event specific keys�Value Type�Description��Message_ECTF_ParmList�CTkvs_ct�KVPairs for each requested value��If one or more keys is not recognized as a session parameter, a warning is status is returned, but the remaining parameters are processed.  If none of the supplied keys is recognized, an error status is returned.

Cautions

The KVSet supplied in ParmList should not be used or modified until the completion event has been processed.

Errors

CT_errorBUSY	(	Server unable to service request

CTses_errorBADSESSION	(	A bad session ID was supplied

CTses_errorCOMMS	(	Communications lost before completion of function

CTses_errorBADPARM	(	Invalid parameter in parameter list

CTses_ImportRTC�	Import an RTC��Name:�CTstatus  CTses_GetParameters ( Session, RTCName, RTCkvs, TranInfo, Mode)��Input:�CTses_ct�Session�Session whose parameter values are to be obtained���CTstring�RTCName�Name of the RTC as it appears in the Application Profile��Output:�CTkvs_ct�RTCkvs�Handle of KVSet to contain returned values��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function copies an RTC as defined in the application’s profile into a local KVS.

Arguments

RTCName is the textual name of the RTC to import.

RTCkvs contains a valid handle to the KVS to copy the RTC information into.

Completion Event

Session_ECTF_ImportRTC�RTC imported��Cautions

The KVS supplied in the RTCkvs argument is cleared of its current contents prior to copying the RTC information.  All information will be lost.

Errors

CT_errorBUSY	(	Server unable to service request

CTses_errorBADSESSION	(	A bad session ID was supplied

CTses_errorCOMMS	(	Communications lost before completion of function

CTses_errorBADRTC	(	Invalid RTC name



CTses_OSU�Request an Object Status Update��Name:�CTstatus CTses_OSU (Object, OSUMode, Keys, KeyCount, ParmList, TranInfo, Mode)��Input:�CTobj_ct�Object�Handle of object to be queried or monitored���CTuint�OSUMode�Indicates whether update is continuous or snapshot���CTsymbol�Keys[]�Array of keys in which application is interested���CTuint�KeyCount�Number of symbols in the keys array��Output:�CTkvs_ct*�ParmList�Current snapshot of object’s status��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation.��Return:�Standard CTstatus values. ���Description

This function get the value of certain named values from an object.  This function is similar to GetParameters, but is in some ways more general ..  In addition to the current values, this function may also request or enable the object to send unsolicited events when the named values are updated.

The particular values available from any object and whether the continuous update service is allowed is determined by each object and is described in the documentation for that object. 

This function and subsequent events use the session associated with Object, typically the session by which the object handle was obtained.  

Arguments

Object may be the object handle of any object that supports OSU.  Typically this will be a Group or an application service.

OSUMode indicates whether the Object attributes should be returned as a one-time snapshot or monitored for continuous updates.  The value should be either CTses_uintSNAPSHOT or CTses_uintMONITOR.

The array Keys[] is an array of CTsymbols naming parameters associated with this session.  KeyCount is the number of symbols in the array Keys. 

If KeyCount is zero or if Keys is NULL, then no values are returned, OSUMode is ignored and no further updates will be received.

ParmList is a KVSet to contain the returned values when this function is called in SYNC mode.  The previous contents of ParmList will be replaced by the returned parameter values when the completion event is processed. In ASYNC mode, the returned values are available as a KVSet in the completion event and the ParmList argument is ignored.

Completion Event

The completion event always contains a snapshot of values for the requested keys.



Session_ECTF_OSU�OSU obtained��Event specific keys�Value Type�Description��Message_ECTF_ParmList�CTkvs_ct�KVPairs for each requested value��If one or more keys is not recognized as an OSU parameter, a warning is status is returned, but the remaining parameters are processed.  If none of the supplied keys is recognized, an error status is returned.

Unsolicited Events

If CTses_OSU() is called with OSUmode = CTses_uintMONITOR, then this unsolicited event is returned when one or more of the requested parameters is changed or deleted.



Session_ECTF_OSU�Parameter values requested by Session_ECTF_OSU available in ParmList��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�CTses_uintUPDATE or CTses_uintDELETED��Message_ECTF_Keys�CTsymbol[]�Array of keys that have been deleted��Message_ECTF_KeyCount�CTuint�Number of symbols in Keys array��Message_ECTF_ParmList�CTkvs_ct�KVPairs for each changed value��If Qualifier is UPDATE, then ParmList is a KVSet containing the KVPairs that have been updated. If Qualifier is DELETED, then Keys is a list of keys that was deleted from the KVSet.  

Errors

If one or more symbols in keys is not valid for OSU, the completion event returns Status = CT_statusWARNING, Error = CT_errorINVALIDKEY, and Keys and KeyCount identifying the list of invalid keys.  The other keys are processed normally.

If all the keys specified are invalid, the completion event returns Status = CT_statusFAIL.

CTses_PutEvent�Send Event to local Session��Name:�CTstatus CTses_PutEvent (Session, Event, TranInfo, Mode)��Input:�CTses_ct�Session�Session to which event is sent���CTkvs_ct�Event�Event to be sent. to session��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard synchronous CTstatus values. ���Description

This function associates an Event with a session for standard event processing.  The event may be sent to any session created by this application.  The standard event processing will apply to the event once it is dispatched to the session.  The event will be matched for handlers, placed on the event queue, and returned from CTses_WaitEvent() just like any other event.  

Arguments

The session must specify a valid session object created by this Application.  To send messages to other applications’ sessions services, use CTses_SendMessage().

Event can be created by the application from scratch or may be an event received from the AIA.  If the Event is created by the application, it need not  have any of the standard attributes of a server generated event unless the event is intended to mimic an S.100 standard event.

Completion Event

None.  This is an AIA local, synchronous function.  

Cautions

The function should be used with caution since it can be used to simulate events that would normally be generated by the server.

Errors

CT_errorSYSTEM	(	System error prevented completion of logoff

CTses_errorBADSESSION	(	A bad session ID was supplied

CTses_RegisterService�Register a session as a Service��Name:�CTstatus CTses_RegisterService( Session, ASI, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Current Session Object Handle���CTstring�ASI�Application Service ID to identify this service���CTkvs_ct�ParmList�Attributes associated with the service��Output:�����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer��Return:�Standard synchronous CTstatus values. ���Description

This function registers the indicated session as supplying the service described by ASI.  The session/ASI pair is recorded in the service registry of the server associated with session.  

The service is registered until session is destroyed or until the service is un-registered using CTses_UnRegisterService().

Arguments

A handle to Session can be retrieved by other applications using CTses_FindService().  Other applications can send messages to Session using that handle and CTses_SendMessage().  Those messages are delivered as events on Session.

ASI is the main index used by other applications to find this session in the registry.  The value of ASI is generally published in the documentation of service being registered.  ASI can be any string, but strings containing the substring “ECTF_” are reserved for use by ECTF.

The KVPairs in ParmList and any other KVPairs associated with ASI in the Application Profile for this session are saved as part of the registration of this service.  These KVPairs will constrain the matching performed by CTses_FindService().   This session will be found by CTses_FindService() only if the registered ParmList is a superset of the requested ParmList. 

Completion Event



Session_ECTF_Register�Message_ECTF_SessionID is registered��Event specific keys�Value Type�Description��None specified����Errors

CT_errorServiceDefined	(	ASI provided is already registered as a service.

CT_errorSYSTEM	(	System error during function execution

CTses_ReleaseService�Release a service handle��Name:�CTstatus CTses_ReleaseService(ServiceID, ParmList, TranInfo, Mode)��Input:�CTobj_ct�ServiceID�Object handle to be released���CTkvs_ct�ParmList�Additional or extension parameters��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTuint�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function releases the object handle, indicating that the application has no further use of that object.

This function allows a session that is using another session as a service to deregister interest in that service.  When this is done, the service will no longer accept messages from the requesting session, and need not send service-related unsolicited events to the requesting session.

This function is not strictly necessary, alternatively, the application can destroy the session on which the service was found.



CTses_SendMessage�Send a message to a service��Name:�CTstatus CTses_SendMessage(Target, ParmList, TranInfo, Mode)��Input:�CTobj_ct�Target�Handle of object to which to sent message���CTkvs_ct�ParmList�KVSet representing message to be sent to service��Output:�����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer��Return:�Standard synchronous CTstatus values. ���Description

This function sends the message in ParmList to the object target.  This function can send unsolicited events, completion events or commands.

Arguments

The Target object may be the handle of any server based object, typically a Group handle or a ServiceID.

The message sent consists of the KVPairs in ParmList, plus the standard ObjectID, ObjectClass and SessionID which are supplied by the AIA.

If ParmList contains a KVPair of the form (Message_ECTF_CommandID = CTsymbol), then the message is considered to be a command.  For commands, a Transaction ID is created by the AIA and inserted into the message, overriding any previous value of Message_ECTF_TranID in the ParmList.  

If the message is intended as a completion event, then Message_ECTF_TranID should be explicitly supplied in ParmList.  

Completion Event

This function has no associated completion event.  Conceptually it is an AIA local, synchronous function.  TranInfo indicates the result of composing and dispatching the message to the server.

However, if mode is CTmode_SYNC and the ParmList represents a command,  this function will wait for the matching transaction event before returning.  In that case, the completion event will be placed in TranInfo.

Cautions

Errors

CT_errorSYSTEM	(	System error occurred during execution of this function



CTses_SetParameters�Set Session parameters��Name:�CTstatus  CTses_SetParameters( Session, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Session Object���CTkvs_ct�ParmList�Session parameters��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

For each KVPair in ParmList, if the Key of that pair names a session parameter, session’s value of that parameter is set to the value of the KVPair.

Completion Event



Session_ECTF_SetParameters�Parameters set��Event specific keys�Value Type�Description��None specified����If one or more keys is not recognized as a session parameter, a warning is status is returned, but the remaining parameters are processed.  If none of the supplied keys is recognized, an error status is returned.

Cautions

None

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error prevented completion

CTses_errorBADSESSION	(	A bad session ID was supplied

CTses_errorCOMMS	(	Communications lost before completion of function

CTses_errorBADPARM	(	Invalid parameter in parameter list

If the CTses_SetParameters() should fail, the values of all session parameters will remain unchanged. 



CTses_Stop�Stop a transaction in progress on a session��Name:�CTstatus CTses_Stop (Session, TransactionID, TranInfo, mode)��Input:�CTses_ct�Session�Session to be destroyed���CTint�TransactionID�Transaction ID previously started and still active transaction��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operations��Return:�Standard CTstatus values. ���Description

This function attempts to terminate a transaction currently outstanding on a session. If the transaction is terminated by CTses_Stop(), the completion event for the transaction will indicate CTerror_TRANSSTOP.  If the transaction could not be stopped because the Stop request came too late, the completion event for the transaction may indicate that the transaction completed normally

In all cases, CTses_Stop() completion event will be delivered after the completion event for the transaction specified by TransactionID.

Arguments

TransactionID identifies the transaction to be terminated.  TransactionID must have been obtained from the TranInfo KVSet of a previous asynchronous API call..

Setting the TransactionID argument to CTses_uintALLTRANSACTIONS will stop all transactions in progress on the specified session.

Completion Event



Session_ECTF_Stop�Transaction stopped��Event specific keys�Value Type�Description��None specified����Cautions

Note that this function may terminate ALL activity on the specified Session if TransactionID is CTses_uintALLTRANSACTIONS.

If the TransactionID specified  does not identify an outstanding transaction, then this function has no effect, the completion event will indicate CTses_warnBADTRANID.

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error prevented completion of logoff

CTses_errorBADSESSION	(	A bad session ID was supplied

CTses_errorNOTRANSTOPPED	(	Specified transaction was not in progress (warning)

The CTses_errorNOTRANSTOPPED value is not necessarily an error. It could mean that the specified transaction has already completed. It could also mean that the specified transaction never existed. It is difficult to determine which is the case and as such the status return should not be treated as a error.  The existence of this status code is highly controversial and as such is left in to stimulate discussion. If this status code is not available, then Stop may as well be a AIA/SYNC function. 



CTses_UnRegisterService�Remove Service Registration of Session��Name:�CTstatus CTses_UnRegisterService( Session, ASI, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Session Object Handle���CTstring�ASI�Application Service ID used to identify service���CTkvs_ct*�ParmList�Additional or extension parameters��Output:�����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer��Return:�Standard CTstatus values. ���Description

This function removes the session/ASI pair from the service registry. Upon completion, the session is no longer associated with ASI and will not be found by CTses_FindService(, ASI,...).  

Sessions that have previously located this service via CTses_FindService() are unaffected; to terminate service with them, use CTses_Destroy().  Note that CTses_Destroy() will also unregister the destroyed session.

Arguments

The Session and ASI that were associated using CTses_RegisterService() are removed from the registry.  If session and ASI are not currently registered, an error is returned.

ParmList is available for future expansion or AIA specific usage.

Completion Event



Session_ECTF_UnregisterService�Service unregistered��Event specific keys�Value Type�Description��None specified����Errors

CT_errorServiceNotRegistered	(	session is not registered as providing ASI.

CT_errorSYSTEM	(	System error occurred during execution of this function



CTses_WaitEvent�Wait for an Event��Name:�CTstatus  CTses_WaitEvent(Session, Timeout, Event, TranInfo )��Input:�CTses_ct�Session�Session on which to wait���CTint�Timeout�Timeout in milliseconds��Output:�CTkvs_ct�Event�Handle to contain returned event��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer��Return:�Standard synchronous CTstatus values. ���Description

This function returns the next event from Session, or returns if no event is available before the specified Timeout expires. 

Arguments

Timeout is normally the number of milliseconds to wait for a new event to arrive.  If Timeout is set to zero (0), the function will immediately return CTses_statusTIMEOUT if no event is available. If timeout is set to CTses_intWAITFOREVER, this function will not return until an event is available.

The Session argument specifies the Session to poll. If the application is controlling multiple sessions, it can wait for event from any of its sessions by specifying CTses_sesANY as the session argument. 

The event KVSet will receive a copy of the returned event.  

When calling CTses_WaitEvent(), the application must provide a KVSet which was created using the CTkvs_Create() function.  The contents of the KVSet when calling CTses_WaitEvent() is not important since any existing key value KVSet will be destroyed before the KVSet is reused.  This is done so that the application can create the KVSets up front and reused rather than requiring that the application create and destroy the KVSet every time the CTses_WaitEvent() function is called.

Errors

CT_errorBADSESSION	(	A bad session ID was supplied.

CT_errorBADPARM	(	Invalid parameter in function call

CT_errorSYSTEM	(	System error 



CTtrn_Initialize�Initialize a CTtranInfo struct��Name:�CTtrn_Initialize( tranInfo, eventData )��Input:�CTtranInfo�tranInfo�CTtranInfo struct to be used in subsequent APIs���CTkvs_ct�eventData�KVSet to be used to store event data��Description

This macro initializes a CTtranInfo structure and its associated KVSet for subsequent use by API functions. After running this macro, all of the data fields of tranInfo are initialized; the eventData member is set to point to the eventData KVSet. 

Arguments

tranInfo is an instance of the CTtranInfo struct.

eventData is a KVSet handle. The KVSet must have already been created prior to invoking this macro. 



�� AUTONUMLGL �5.�	Group Management�xe "group management" \b��xe "services:group management" \b�

�autonumlgl �	Introduction

The Group Management system service (or simply Group Manager) governs the allocation and connection of resource objects�xe "resource objects"� into Groups for use by the application.  Groups are a collection of connected resources.  Resources are standardized interfaces to the devices used for signal processing. 

Groups are the basis of configuration, allocation, ownership, and reference:

When a Group object is created, it defines a set of resources (to which hardware must be allocated), its properties, and the isochronous channels that must be set up when the hardware is configured. 

When the resources and channels of the Group are actually allocated (which for static allocation schemes may happen at the same time that the group is configured, and for dynamic schemes may happen only directly before use of the resource), the Group definition provides the “signature” that must be matched by the hardware. 

When ownership of the Group changes (i.e., when the group is handed off to another session), the ownership of the resources is transferred along with the Group object.

When an application wishes to invoke a resource operation, the argument it presents to the API function is the handle of the Group in which the resource is contained. This permits all necessary allocation and switching as well as the operation to take place in a controlled manner.

Groups that represent calls (that is, Groups than contain a call channel resource) can be passed between sessions and applications without switching or transferring the call.  Groups include an application managed KVSet that can be used to annotate the Group or Call as it is passed between applications.

The Group API manages the creation, destruction, ownership, configuration and interrogation of Groups.  



�autonumlgl �	Function Summary�xe "functions:group management function summary"�



Function Summary�Description��CTgrp_Allocate(Group, ResourceName, Timeout, ParmList, TranInfo, Mode)�Override implicit dynamic allocation��CTgrp_Create(Group, Session, GroupConfig, ACT, Timeout, ParmList, TranInfo, Mode)�Create a new Group��CTgrp_Configure(Group, GroupConfig, ACT, Timeout, ParmList, TranInfo, Mode)�(re)Configure an existing Group��CTgrp_Deallocate(Group, ResourceName, ParmList, TranInfo, Mode)�Stop the override of implicit dynamic allocation��CTgrp_Destroy(Group, ParmList, TranInfo, Mode)�Destroy a Group��CTgrp_GetParameterNames(Group, Keys, KeyCount ParameterNames, TranInfo, Mode)�Get list of parameters of resources in the Group��CTgrp_GetParameterRange(Group, Keys, KeyCount, ParameterRangeSet, TranInfo, Mode)�Get range of parameter values of resources in the Group��CTgrp_GetParameters(Group, Keys, KeyCount, Parameters, TranInfo, Mode)�Get parameters of resources in the Group��CTgrp_GetGroupInfo(Group, Keys, KeyCount, Info, TranInfo, Mode)�Get values from the Group information KVSet��CTgrp_GetRTC( Group, RTC, TranInfo, Mode)�Get the current Group Level RTC setting��CTgrp_HandOff (Group, ASI, Tag, Timeout, TranInfo, Mode)�Hand off a Group to another Session��CTgrp_PutGroupInfo(Group, KVSet, TranInfo, Mode)�Provide Information to the Group��CTgrp_Retrieve(Group, Cause, ParmList, &Timeout, TranInfo, Mode)�Retrieve a Group previously handed off to another session��CTgrp_Return(Group, Tag, Timeout, ParmList, TranInfo, Mode)�Return Group to a previous owner��CTgrp_SetParameters(Group, ParmList, TranInfo, Mode)�Set parameters of resources in the Group��CTgrp_SetRTC(Group, RTC, TranInfo, Mode)�Add RTC to a Group��CTgrp_Stop(Group, TranID, TranInfo, Mode)�Stop an operation on a Group��CTgrp_WaitGroup(Session, Group, &Timeout, TranInfo)�Wait for a Group to come to session���autonumlgl �	Overview

� AUTONUMLGL �5.3.1.�	Group Structure

A Group’s structure�xe "group structure"��xe "group:group structure"� is illustrated below.  It consists of a primary resource and optionally one or more secondary resources.

� INCLUDEPICTURE C:\\USR\\HENDERSA\\SCSAWA\\GRSTRCT.WMF \* MERGEFORMAT ���

Figure � SEQ Figure \* ARABIC �9�:  Illustration of Group structure

A secondary resource transmits and/or receives a data stream to/from the primary resource, but secondary resources do not transmit data streams to each other.  All data flows either into or out of the primary resource.

The server automatically creates data paths between the resources.  If two secondary resources are both trying to “talk” to the primary resource at the same time, the server arbitrates between them according to the arbitration scheme in effect in the server (i.e., either Last Talker or First Talker). These arbitration schemes are discussed in Section 1.6 (Concurrency). The application may determine which scheme is in effect by querying the Group parameter GROUP_ECTF_ArbitrationScheme.

� AUTONUMLGL �5.3.2.�	Group Configuration and Group Allocation�xe "group configuration" \b��xe "group:group configuration" \b��xe "group allocation" \b��xe "group:group allocation" \b�

As discussed in Chapter 1, the subject of resource allocation, the exclusive reservation of hardware and isochronous datapaths, is a subject of intense study in server-based computer telephony, and existing servers use a variety of resource allocation schemes. In order to handle a range of resource allocation schemes in the S.100 Framework, the concepts of Configuration and Allocation are used in S.100 as defined below.

Allocation refers to the exclusive reservation of hardware resources by an application. In an S.100 server, it refers to exclusive reservation of a computer telephony hardware resource and the isochronous datapaths required for its proper operation. When the resources of a Group are allocated, any operations on them will not fail due to missing hardware or insufficient bandwidth (although they could fail for other reasons).

Configuration refers to the definition of a Group object, with its resources and their properties (including datapath requirements) precisely identified. A configured group does not necessarily have physical resources allocated to it.

The S.100 framework supports both static and dynamic allocation schemes as follows:

In the Application Profile (see Appendix A), the resources that comprise a Group (i.e., the resource specifications of a Group Configuration) can be tagged to be “dynamically allocatable”. A resource specification so marked may be dynamically allocated by a server if it is able to do so. A resource specification not so tagged is statically allocatable.

When a Group is configured (i.e., via the CTgrp_Configure() function), all statically allocatable resources and associated datapaths are allocated as well. Dynamically allocatable resources are allocated at this time at the discretion of the server.

A server otherwise practicing dynamic allocation can be instructed programmatically to statically allocate a Group by means of the functions CTgrp_Allocate() and CTgrp_Deallocate().

� AUTONUMLGL �5.3.3.�	Creating a Group�xe "group:group creation"�

A Group is constructed by executing the function CTgrp_Create(), passing it a description of the Group to be created, and the handle of an active session through which communication between the Group and application is to be conducted.  After the Group has been created, commands can be issued to it via the resource-specific APIs (documented in later chapters), or the CTses_SendMessage()  (described in the previous chapter).

The CTgrp_Create() function allows (and expects) the description of a Group to be abbreviated to a simple Group Configuration Name which is expanded in the Application Profile�xe "application profile"� (more specifically, in the groupconfig block of the Application Profile).  Resources are an abstraction for the various processing features or capabilities of the Group.  

The specification of which resources are in a Group and the attributes of those resources is generally contained in the Application Profile.  It is possible for the application to specify resource selection requirements via the runtime API.  This is generally done when a specific, named resource must be allocated to the Group, as when that resource is managed or allocated by an external process.

Once a Group exists it can be reconfigured to a new GroupConfig, thereby adding or deleting secondary resources, using the function call CTgrp_Configure().  

An application may also obtain a Group handle via the Group handoff mechanism.  This is generally initiated using the SCR functions: 

During Group handoff, an existing Group is reconfigured and delivered a new session

� AUTONUMLGL �5.3.4.�	Resource commands and APIs�xe "resource:commands and APIs"�

After the Group is created, application commands are sent to the Group using the Group handle.  The Group dispatches the commands to the appropriate resource.  The standard S.100 resource APIs are documented in later chapters.

� AUTONUMLGL �5.3.5.�	Other Group functions

Groups are destroyed using the function call CTgrp_Destroy().  This function releases all the resources in the Group (if static allocation was performed) and breaks any communications connect between those resources.

Resources export a number of parameters that describe its abilities or its current configuration.  

A list of the parameters supported by the resources in a Group is obtained using the function CTgrp_GetParameterNames().

The current value or setting of resource parameters is obtained using CTgrp_GetParameters().  The value of a settable parameter can be set using the function CTgrp_SetParameters().  The range of possible values for a parameter is obtained using the function CTgrp_GetParameterRanges().

An application can attach an Application Context Token (ACT) to a Group.  An ACT is a user defined token that is stored in the Group.  This token is returned to the application every time the Group sends an event to the application.  The value of the token is returned in the event KVSet with the key Group_ECTF_ACT. If no token value is set by the application, the value returned by this key will be NULL. If the Group’s ACT is set, an event handler can be enabled to execute whenever a Group event is returned which contains the specified ACT KVPair.  The value of the token is a void *, and can be a pointer to a function, a pointer to a data structure, or the index into a state table etc.; i.e. the value can be anything that is useful to the application developer. 

If the application developer sets an ACT for a session as well, the event will contain both the Group’s and the session’s ACTs under different keys.  The session’s ACT value will be stored using the key Session_ECTF_ACT and the group’s ACT will be stored with the key Group_ECTF_ACT.

� AUTONUMLGL �5.3.6.�	Groups and the Application Profiles�xe "group:and application profiles"�

The Application Profile is a symbolic, descriptive specification of the various kinds of configuration information required by an application.  While it is possible to supply this information directly from the application via API commands, supplying this information statically in Application Profiles simplifies both application development and administration.

The Application Profile is developed by the application developer together with the application source code, and is installed by the system administrator.  The Application Profile may be maintained as a text file, a data file edited by a special tool, or by any other means supplied by the administrative functions of the S.100 server.

The GroupConfig block of the Application Profile is used when configuring a Group.  A GroupConfig block contains descriptions of Group configurations that are used by the application.  The S.100 server uses that information to configure (and reconfigure) Groups when requested by an application.  Each GroupConfig specifies a primary resource, a collection of secondary resources, and the RTCs to be enabled.  

An application developer (or perhaps the system administrator) can optionally define a Groupset.  A Groupset specifies a set of Group configurations that will be used by a Group.  Although the set of resources in all the Group configurations of a GroupSet are not “reserved” for all those configurations, it is expected that in some cases the server resource allocation mechanism can use this “lookahead” information to optimized allocation of resources in some cases.

All configuration in a GroupSet must have the same primary resource, reflecting the tree topology of the Group communication model.

Each Groupset and Groupconfig has a name specified in the Application Profile.  That name is used in API invocations to refer to the Groupset or Groupconfig.

The resources specified in Groupconfigs are defined in the Resource block of the Application Profile.  The resource block assigns a name to each required resource.  That is, a name is assigned to the combination of resource type and the attributes that resource must have.  When the S.100 server configures a Group, it allocates resources that satisfy the attributes specified in the Resource block.  A specification language (an “algebra”, defined in Appendix A) may be used to specify unions or intersections of attributes for these symbolic resources.

A particular Groupconfig may have also specify RTCs and set up parameters.  This has the same effect as using the Group API functions set up RTC and parameters, but the Application profile provides a simpler syntax, and allows the server to configure the Group automatically without application intervention whenever a Group is created or configured.

�autonumlgl �	Group Run Time Control�xe "group:runtime control"�

Run Time Control (RTC) is the process of enabling one resource to control an active operation executing on another resource upon the occurrence of a specified set of initial conditions.  The API overview gives a thorough discussion of RTC.

Group RTC can be activated, cleared and queried by the Group Management API functions.  

Group RTCs are persistent as opposed to being issued with each function call.  They are created for the Group and stay with the Group until such a time as the Group is destroyed or the RTC is explicitly cleared.  Some examples of a Group RTC could be:

“Stop all actions upon detection of Call Channel Resource going �to the idle state (i.e. call has been disconnected).”

“Stop play upon detection of any tone.”

In these examples, the RTC controls the action only when the operation is executing on the Group.

The RTC is in the form of a Key Value Set (KVSet).  The key portion of the RTC is a CTsymbol corresponding to an action recognized by one member of the Group.    An example of a Key could be:

Player_ECTF_Stop

The Value portion of  the RTC is an array of CTsymbol that represents a set of conditions that  members of the Group are capable of detecting.  An example of a Value could be:

SIGD_ECTF_Digit1

An RTC may be defined in the Application Profile, using declarative syntax (described in Appendix A). The API function CTses_ImportRTC() may subsequently be used to read the RTC definition into a KVSet.

� AUTONUMLGL �5.3.8.�	Group Ownership and Handoff

Group Ownership�xe "group:ownership"�

Groups and the Group Manager support the idea of Group ownership.  One Session is denoted as the owner of the Group, that session is the only session allowed to issue resource configuration or control commands.  The session that creates a Group is the initial owner.  The owner can give ownership of the Group (Hand-off the Group) to another session.  

When handing off a Group, the owning session may be kept on a stack of previous owners (the group’s owner stack).  The current owner is at the top of the stack, and previous owners are on the stack below.  The oldest, perhaps the original, owner is at the bottom of the owner stack.  The current owner may return the Group to any session on the owner stack.  

The owning session does not hand the Group off to a specific session. Instead, it is handed off (via the function CTgrp_Handoff()) to a specific ASI. The server finds a session that is registered for the ASI (which may have been done via the function CTscr_RequestGroup()), verifies that the session is expecting a Group (i.e., that the advertising count of that session is not depleted), looks up the initial configuration for the ASI, reconfigures the Group, and updates the ownership of the Group.

The Group API also allows a previous owner to “preemptively” retrieve ownership of a Group it has handed off (via the function CTgrp_Retrieve().

Handoff and Return Tags�xe "group:handoff"��xe "handoff"��xe "return tag"��xe "group:return tag"�

When a Group is handed-off from a donor to a recipient session, the donor may specify a set of Tags.  By specifying a Tag, the session is kept on the owner stack, registered with that Tag or Tags.  By staying on the owner stack, the session retains a valid handle for the Group.  If a Tag is not used during handoff, the donor session is not kept on the owner stack,  and the Group handle is marked as invalid.

When a session returns the Group to a previous owner by invoking CTgrp_Return() with a tag, the Group Manager walks down the owner stack, looking for a previous owner with a tag that matches the input tag argument.  The first session that matches is given ownership of the Group.  All sessions above it on the owner stack are receive the Group_ECTF_Unwind event and are removed from the owner stack.  If the tag is specified by the returning session is NULL, the Group is returned to the first session found on the owner stack; that is, a simple return.

�EMBED Unknown  \* MERGEFORMAT \s���

Figure � SEQ Figure \* ARABIC �10�:  Group Handoff

� REF _Ref339368603 \* MERGEFORMAT �Figure 10� shows some of the possibilities for the transfer of Group ownership using Tags for handoff and return.  

Session 1 hands ownership to Session 2 and stays on the owner stack with Tag=“Main”.  Session 2 hands the Group to Session 3 and stays on the owner stack with Tag=“Submenu1”.  Session 3 can return the Group to either Session 1 or Session 2 by returning to one of those tags, or return to Session 2 by returning to the NULL tag.  If Session 3 returns the Group to Session 1 using the tag “Main”, Session 2 receives the Group_ECTF_Unwind event and is removed from the owner stack.

Group Handoff Events�xe "event:group handoff events"��xe "group:group handoff event"�

When a Group handed to a session, that Group receives the Group_ECTF_Arrival event, containing the handle of the Group.  When a Group is returned to a session on the owner stack, that session receives the Group_ECTF_Returned event.  When a session is removed from the owner stack without becoming owner of the Group, that session receives the Group_ECTF_Unwind event.

Receipt of the Group_ECTF_Unwind event indicates that the session is being removed from the owner stack, ownership of the Group will not be returned, and the Group handle is no longer valid.  The qualifier indicates whether the Group has been returned, retrieved, destroyed or placed out of service.

WaitGroup

As described above, there are several ways a session may become owner of a Group.

CTgrp_Create() completes, the session receives a Group_ECTF_Create event

CTgrp_Retrieve() completes, the session receives a Group_ECTF_Retrieve event.

The session is the recipient of a handoff; the session receives a Group_ECTF_Arrival event

The Group is returned to the previous owner by CTgrp_Return(), the session receives a Group_ECTF_Returned event.

The function CTgrp_WaitGroup() blocks waiting for either Group_ECTF_Arrival or Group_ECTF_Returned.  In either case, the handle of the Group is returned as an output argument.

API for Group handoff

To receive a handed off Group, a session registers its ASI(s) using the function CTscr_RequestGroup().  The application gets the Group handle by calling CTgrp_WaitGroup() or by handling the Group_ECTF_Arrival event directly.

An owning session hands off a Group by invoking CTgrp_Handoff() specifying the ASI of the receiving session and a tag.  The SCR finds a session registered to that ASI adjusts the advertising count, and hands the Group to that session.

As part of the process of handing off, the Group resources are reconfigured for the receiving session.  The resource configuration for the receiving session is determined by the Groupconfig registered with the ASI.  If the Group cannot be reconfigured for the receiving session, the handoff fails, ownership stays with the original owner, and the configuration is unchanged.

Retrieval�xe "group:group retrieval"�

A session that has handed off a Group may also “grab” it back from another session using CTgrp_Retrieve().   This could be used, for example, if a caller is waiting for a service or agent; while waiting, the Group is handed to a “diversionary” application that entertains the caller (music-on-hold, play “DOOM”, or whatever)  while waiting.  When the desired service is available, the Group is retrieved from the diversion and handed to the real service application.  Obviously, human factors must be considered when using this function.

During retrieval, the current owner session receives the event Group_ECTF_Unwind, with a cause code indicating that the Group has been retrieved.  Any other session on the owner stack between the current owner and retrieving session will also receive the Group_ECTF_Unwind event.  The retrieving session receives the Group_ECTF_Retrieve completion event.

� AUTONUMLGL �5.3.9.�	Groups and OSU�xe "group:and OSU"��xe "Object Status Update"�

A session that has a Group handle may request OSU from that Group.  Generally, a session has a Group handle because it is on the owner stack.  Handing off a Group has no effect on a OSU request.  The requesting Session will still have a valid Group handle, and the OSU request will still be registered in the Group.

When a Group is destroyed, any session that has OSU enabled on the Group will receive the Group_ECTF_Destroy event.  A Session with OSU that is also on the owner stack will also receive the Group_ECTF_Unwind event.  Receipt of the Group_ECTF_GroupDestroyed event indicates that the Group handle is no longer valid, and no further OSU events will be delivered.

Using the example above, if session 2 is on the ownership stack and has OSU enabled, then when the Group is returned from session 3 to session 1, session 2 receives a Group Unwind event.  Session 2 will no longer receive ownership of the Group, BUT session 2 can still request and receive OSU from the Group.  When the Group is destroyed session 2 receives a Group_ECTF_GroupDestroyed event to indicate that the Group handle is no longer valid and that it will no longer receive OSU notifications.

�autonumlgl �	Definitions

The following section describes the data definitions including any types, parameters, error codes and constants used by this program interface.

�autonumlgl �	Errors

All of the errors listed below are of type CTerror.



Table � SEQ Table \* ARABIC �24�: S.100 Error Codes

Error Code Name�Description��CT_errorBADFUNCTION�Function not supported by this Group��CT_errorBADGROUP�Invalid Group object��CT_errorBADGROUPCONFIG�Invalid groupConfig name��CT_errorBADGROUPSET�Invalid groupSet name��CT_errorBADPARM�Invalid Parameter in function call��CT_errorBADRESOURCE�Function not supported by this Group��CT_errorBADRTC�Invalid Run Time Control object��CT_errorBADSESSION�Invalid Session Object��CT_errorBUSY�Resource is already busy��CT_errorRESUNAVAILABLE�Resource requested (explicitly or implicitly) not available��CT_errorRTCVALIDATE�RTC not valid for current Group��CT_errorSYSTEM�Error in the system.��CT_errorNOTCONFIGURED�Resource named was not configured in the Group���autonumlgl �	Group Parameters�xe "group:group parameters"�



Table � SEQ Table \* ARABIC �25�: Group Management Parameters

Parameter Name�Data Type�Description��Group_ECTF_ResourceName�SCstring�Name of Resource (as specified in application profile)��Group_ECTF_RTCValidate�CTuint�Latent RTC validation reporting mode��Group_ECTF_ArbitrationScheme�CTuint�Determines whether the channel arbitration scheme (for Secondary to Primary Resource Communication) is Last Talker, First Talker, Blocking or PreEmption.���autonumlgl �	RTC Actions



Table � SEQ Table \* ARABIC �26�: Group Management Runtime Control Actions



Control Key�Definition�Event Generated��Group_ECTF_Stop�Stop Current Operation�Group_ECTF_Stop��

�autonumlgl �	Unsolicited Group Events�xe "event:unsolicited group events"�



Group_ECTF_Arrival�Group has been handed to this session��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�A Group has handed to this session��Group_ECTF_Group�CTgrp_ct�Handle of the newly delivered Group��Group_ECTF_ACT�void*�Group ACT supplied when session registered to request a Group. (may be NULL, if session was not registered, or no ACT was specified)��SCR_ECTF_ASI�CTstring�The ASI to which this Group was handed��

Group_ECTF_Destroy�Group has been Destroyed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�The indicated Group has been destroyed, the Group handle is no longer valid for Group operations.  This event is sent to sessions with active OSU requests.  Sessions on the owner stack of the Group will receive Group_ECTF_Unwind.��Group_ECTF_Group�CTgrp_ct�Handle of the Group that has been destroyed, this handle is for comparison purposes in the application, it can no longer be used in AIA functions.��Group_ECTF_ACT�void*�Group ACT for the destroyed Group.  The value and usage of the value is determined by the application.��



Group_ECTF_Returned�Group has been returned to this session��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�A Group has returned to this session.  This is a Group which was handed off with a non-NULL return tag.��Group_ECTF_Group�CTgrp_ct�Handle of the returned Group��Group_ECTF_ACT�void*�Group ACT for the returned Group.  The value and usage of the value is determined by the application.��Group_ECTF_Tag�CTstring�The tag supplied when the Group was returned by the (previously) owning session.��

Group_ECTF_Unwind�Session has been removed from the owner stack of this Group ��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�This session has been removed from the owner stack of the indicated Group.  This is a Group which was handed off with a non-NULL return tag.

The Group have been returned to a previous owner or the Group may be destroyed.��Group_ECTF_Group�CTgrp_ct�Handle of the Group ��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Qualifier�CTuint�One of the following values, indicating the reason for the session being removed from the owner stack.

CTgrp_uintDESTROYED�CTgrp_uintRETURNED,�CTgrp_uintRETRIEVED��Group_ECTF_Cause�CTuint�The Cause value supplied in CTgrp_Retrieve() or.

CTgrp_uintDESTROYED�CTgrp_uintRETURNED��

� AUTONUMLGL �5.6.�	Constants



Table � SEQ Table \* ARABIC �27�: Group Management Constants



CTgrp_uintDESTROYED�Value indicating that a session has been removed from the owner stack because the Group has been destroyed.��CTgrp_uintRETURNED�Value indicating that a Group was returned specifically to a previous owner, bypassing this session on the owner stack.��CTgrp_uintRETRIEVED�Value indicating that a Group was retrieved by a previous owner, bypassing this session on the owner stack.��CTgrp_uintLastTalker�Value indicating that the arbitration scheme for Secondary to Primary Resource communication is via Last Talker (i.e., LIFO)��CTgrp_uintFirstTalker�Value indicating that the arbitration scheme for Secondary to Primary Resource communication is via First Talker (i.e., FIFO)��CTgrp_uintBlocking�Value indicating that the arbitration scheme for Secondary to Primary Resource communication is via blocking (i.e., a new talker gets an error message)��CTgrp_uintPreEmption�Value indicating that the arbitration scheme for Secondary to Primary Resource communication is via Last Talker (i.e., the new talker overrides)����autonumlgl �	Group Function Definitions�xe "functions:group function definitions"�

CTgrp_Allocate�	Allocate an existing Group��Name:�CTstatus  CTgrp_Allocate(Group, ResourceName,  Timeout, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Handle of Group to be allocated���CTstring�ResourceName�Name of resource (from application profile) to be explicitly allocated to the group.���CTkvs_ct�ParmList�additional parameters may define the configuration��Output:�����Standard:�CTint�Timeout�Timeout value (in milliseconds)���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function indicates to the server that a particular resource currently configured but not necessarily allocated to the group is to be explicitly allocated. In a server that practices implicit dynamic allocation, this means that implicit dynamic allocation is temporarily overridden for this resource - the group has exclusive ownership of the resource until it is deallocated via the function CTgrp_Deallocate().

The argument ResourceName is a CTstring defined in the Application profile naming a resource, together with its required attributes.

The ParmList can be used to refine the resource descriptions for the requested Resource. For example, including the KVPair CC_ECTF_ResourceID = “x1234” restricts the choice of call channel resources to those with the attribute ResourceID set to “x1234”; in this example selecting a particular call channel.

The timeout parameter specifies the maximum amount of time (in milliseconds) to wait for the Resources.

Completion Event



Group_ECTF_Allocate�Group has been allocated��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Allocate completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the allocated Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Cautions

The returned Group argument is not valid until the completion event corresponding to the API call is received.

The groupconfig referred to in the input parameter is expected to be unique. If it is not, then the KVPair (Group_ECTF_GroupSet, <groupset name>) is expected to be provided in the input ParmList and the combination of groupset and groupconfig is expected to be unique.

Errors

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorNOTCONFIGURED	(	Resource named was not configured in group

CT_errorBADSESSION	(	Invalid Session Handle

CT_errorBUSY	(	Group Manager is Busy

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CT_errorRESUNAVAILABLE	(	Resource in the Group to be created unavailable

�

CTgrp_Configure�	Configure an existing Group��Name:�CTstatus  CTgrp_Configure(Group, Groupconfig, ACT, Timeout, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Handle of Group to be reconfigured���CTstring�Groupconfig�Groupconfig to be used in the reconfiguration (from Application Profile���void *�ACT�Application Context Token.  A user defined value which will be stored with the Group and returned to the application with every Group event.���CTkvs_ct�ParmList�additional parameters may define the configuration��Output:�����Standard:�CTint�Timeout�Timeout value (in milliseconds)���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows an application to reconfigure a Group that it currently owns.  The new configuration is described in the Application Profile by the Groupconfig corresponding to the input argument.

The ParmList can be used to refine the resource descriptions for the requested Group configuration.  The names and values of various resource attributes are included as KVPairs.  For example, including the KVPair CC_ECTF_ResourceID = “x1234” restricts the choice of call channel resources to those with the attribute ResourceID set to “x1234”; in this example selecting a particular call channel.

The ParmList cannot be used to introduce new resources into a configuration, it can only add attribute constraints or parameter setting for the resources defined for the groupconfig.

In the event that groupConfig is NULL, the default groupconfig associated with the session will be used to reconfigure the group.

Upon invocation of this function, the Group is already in some configuration, specified by a groupconfig within the Application Profile.  The new groupconfig must have the same primary resource as the old groupconfig, or an error will occur.

If a Resource cannot be allocated to the Group from every statically-allocatable Resource specified in the Group configuration within the timeout period, the function will fail and the Group will not be created.

The timeout parameter specifies the maximum amount of time (in milliseconds) to wait for the Resources.

Completion Event



Group_ECTF_Configure�Group has been reconfigured��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Configure completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the reconfigured Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Cautions

The returned Group argument is not valid until the completion event corresponding to the API call is received.

The groupconfig referred to in the input parameter is expected to be unique. If it is not, then the KVPair (Group_ECTF_GroupSet, <groupset name>) is expected to be provided in the input ParmList and the combination of groupset and groupconfig is expected to be unique.

Errors

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorNOTCONFIGURED	(	Resource named was not configured in Group

CT_errorBADSESSION	(	Invalid Session Handle

CT_errorBUSY	(	Group Manager is Busy

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CT_errorRESUNAVAILABLE	(	Resource in the Group to be created unavailable

CTgrp_Create�Create a new Group��Name:�CTstatus  CTgrp_Create(Group, Session, GroupConfig, ACT, Timeout, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Handle of session owning the Group���CTstring�GroupConfig�The Group configuration to be used to perform the configuration.���void *�ACT�Application Context Token.  A user defined value which will be stored with the Group and returned to the application with every Group event.��Output:�CTgrp_ct�Group�Group object handle��Standard:�CTint�Timeout�Timeout value (in milliseconds)���CTkvs_ct�ParmList�Additional parameters���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

CTgrp_Create() creates a new Group.  The configuration of the Group is specified by the groupconfig in the session’s Application Profile referred to by the input argument GroupConfig.  The Group handle is returned in output argument Group, and in the completion event.  The session specified in the input parameter becomes the owner of the Group.

The ParmList is used further refine configuration requirements of the Group.  ParmList is used just an in CTgrp_Configure(), see discussion there for more details.

Cautions

The Resource Allocation Service will attempt to allocate a Resource from each Resource specified in the new Group Configuration.  If a Resource cannot be allocated to the Group from every Resource specified within the specified time, the function will fail.

The Handle returned by this function is only valid inside the process in which this function was called.

Completion Event



Group_ECTF_Create�Group has been created��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Create completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the newly created Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorRESUNAVAILABLE	(	Resource is not available 

CT_errorBADGROUPCONFIG	(	Invalid Group Configuration Name

CT_errorBUSY	(	Group Manager is Busy

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTgrp_Deallocate�Deallocate a Group��Name:�CTstatus  CTgrp_Deallocate(Group, ResourceName, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���SCstring�ResourceName�Name of resource for which explicit allocation is turned off (i.e., implicit dynamic allocation no longer overridden)��Output:�None����Standard:�CTkvs_ct�ParmList�Additional parameters���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function indicates to the server practicing implicit dynamic allocation that a resource that had been temporarily explicitly allocated is to be deallocated (i.e., the overriding of implicit dynamic allocation for this resource is now rescinded, and the resource may be deallocated and used elsewhere). The argument ResourceName is a string referring to a resource in the Application Profile that had been previously explicitly allocated via CTgrp_Allocate().

Cautions



Completion Event



Group_ECTF_Deallocate�Group has been deallocated��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Deallocate completion event.��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBUSY	(	Group Manager is Busy

CT_errorSYSTEM	(	System Error



CTgrp_Destroy�Destroy a Group��Name:�CTstatus  CTgrp_Destroy(Group, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle��Output:�None����Standard:�CTkvs_ct�ParmList�Additional parameters���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function destroys an existing Group.  Resources in the Group are deallocated.  The owner stack is unwound.  OSU requests for this Group are terminated.  The Group handle is made invalid.  

Other sessions on the owner stack receive a Group_ECTF_Unwind event, with Group_ECTF_Cause = CTgrp_uintDestroyed

Sessions with outstanding OSU requests receive a Group_ECTF_Destroy event, indicating that the handle is no longer valid, and the object status will not be further updated.

Cautions

After this function is complete, the handle will no longer be a valid reference to this object.  Further, the S.100 API implementation may re-use this handle.  Thus, using this handle after this function has completed will, at best, result in an error;  in some cases it may succeed,but with unexpected, and potentially disasterous, side-effects.

Completion Event



Group_ECTF_Destroy�Group has been destroyed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Destroy completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the destroyed Group, this handle is no longer valid for AIA operations.��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBUSY	(	Group Manager is Busy

CT_errorSYSTEM	(	System Error

CTgrp_GetParameterRange�Return the Ranges of Parameter Values��Name:�CTstatus  CTgrp_GetParameterRange(Group, Keys, KeyCount, ParameterRangeSet,TranInfo, Mode)��Input:�CTgrp_ct�Group�Group Handle���CTsymbol�Keys[]�An array of parameters whose possible ranges of values are requested���CTuint�KeyCount�Number of elements passed in keys��Output:�CTkvs_ct*�ParameterRangeSet�Pointer to a KVSet containing the requested parameter ranges��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to obtain the range of parameter values of resources specific to the Group, i.e., the range of values that it may take.  The application provides a list of parameters of which it wants the range, in the array Keys[].  The range of all  parameters are returned if the Keys[] argument is set to CT_NULL.  If a list of parameters is specified, the length of the list should be specified in KeyCount.  The parameters are returned in the form of a KVSet in the completion event whose Key is Group_ECTF_ParameterRangeSet and whose value is a KVSet. If the output argument ParameterRangeSet is not null, it will point to this KVSet.

The KVSet returned consists of KVPairs whose Keys are specified in the input argument Keys[], and whose values indicate the range of possible values for that parameter.  Ranges may be specified using a single value, an array of values, or a numeric range (i.e., CTirange).

Completion Event



Group_ECTF_GetParameterRange�Parameter Ranges are available��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_GetParameterRanges completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Group_ECTF_ParameterRangeSet�CTkvs_ct�KVSet of returned ranges��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	This Resource is not supported by this Group Configuration

CT_errorBUSY	(	Resource in Group is busy

CT_errorSYSTEM	(	A system error occurred during the execution of this function. 

CTgrp_GetParameterNames�Return list of Parameters of the Group��Name:�CTstatus  CTgrp_GetParameterNames(Group, Keys, KeyCount,  ParameterNames,TranInfo, Mode)��Input:�CTgrp_ct�Group�Group Handle���CTsymbol�Keys[]�The list of parameters whose existence is being verified���CTuint�KeyCount�Number of entries in keys.��Output:�CTkvs_ct *�ParameterNames�Pointer to a KVSet handle containing the boolean values (one for each key in keys)��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to query the existence of parameters of resources specific to the Group. 

The application provides a list of parameters of which it wants to know the existence, in the array Keys[].  All parameters are returned if the Keys[] argument is set to CT_NULL. If a list of parameters is specified, KeyCount should specify the number of elements in the list.  

The parameters are returned in the completion event as the value of the Key Group_ECTF_ParameterNames.  The value is in the form of a KVSet  in which the Keys represent the parameter names and the Values are either CT_TRUE or CT_FALSE..  A value of CT_TRUE indicates that the parameter is supported by a particular resource contained in the Group.

In synchronous mode, if the output argument ParameterNames is not null, its value will point to a KVSet whose value is the ParameterNames KVSet.

Completion Event



Group_ECTF_GetParameterNames�List of Parameter Names is available��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_GetParameterNames completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Group_ECTF_ParameterNames�CTkvs_ct�Contains a key for every parameter name in Keys[] that is available in the Group.��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call 

CT_errorBADRESOURCE	(	This Resource is not supported by this Group Configuration

CT_errorBUSY	(	Resource in Group is busy

CT_errorSYSTEM	(	A system error occurred during the execution of this function. 

CTgrp_GetGroupInfo�Get Value from Group Level Information��Name:�CTstatus CTgrp_GetGroupInfo(Group, Keys, KeyCount, GroupInfo, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group Handle���CTsymbol�Keys[]�The array of information parameters to get���CTuint�KeyCount�Number of elements in Keys.��Output:�CTkvs_ct *�GroupInfo�KVSet to contain the returned parameters��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to obtain the current values of a Key Value Set containing user information specific to the Group.  The application provides a list of parameters of which it wants the value, in the array Keys[].  All parameters are returned if the Keys[] argument is set to CT_NULL. If a list of parameters is specified, KeyCount should contain the number of elements in Keys.

This function returns Group Information in the completion, in a KVPair whose key is Group_ECTF_GroupInfoSet and whose value is a KVSet containing the required data. In synchronous mode, if the output argument GroupInfoSet is not NULL, it will point to this KVSet.

Completion Event



Group_ECTF_GetGroupInfo�Group Info is available��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_GetInfo completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the newly created Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Group_ECTF_GroupInfo�CTkvs_ct�KVSet containing the selected Keys and the values of the associated items in the GroupInfo KVSet.��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Handle 

CT_errorBUSY	(	Resource in Group is busy

CT_errorSYSTEM	(	A system error occurred during the execution of this function.

CT_errorBADPARM	(	Invalid parameter (or key)

CTgrp_GetParameters�Return the Group’s parameters��Name:�CTstatus  CTgrp_GetParameters(Group, Keys, KeyCount, Parameters, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group Handle���CTsymbol�Keys[]�The array of parameters to get the values of���CTuint�KeyCount�Number of elements in keys��Output:�CTkvs_ct *�Parameters�Handle for the returned parameters��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to obtain the current settings or resource parameters specific to the Group. 

The application provides a list of parameters of which it wants the value, in the array Keys[].  All parameters are returned if the Keys[] argument is set to CT_NULL. If a list of parameters is specified, KeyCount should contain the number of elements in the list.   The parameters are returned in the completion event in a KVPair whose key is Group_ECTF_Parameters and whose value is a KVSet with the parameters defined.  The output parameter Parameters is a pointer to that KVSet. 

This function is the preferred method of examining information registered within a Group.

Completion Event



Group_ECTF_GetParameters�Parameter values are returned��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_GetParameters completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Group_ECTF_Parameters�CTkvs_ct�KVSet containing the selected Keys and the values of the associated parameters in the Group��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Handle 

CT_errorBUSY	(	Resource in Group is busy

CT_errorBADPARM	(	Invalid parameter in function call

CT_errorSYSTEM	(	A system error occurred during the execution of this function. 

CTgrp_GetRTC�Get the current Group Level RTC setting��Name:�CTstatus  CTgrp_GetRTC( Group, RTC, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group handle��Output:�CTkvs_ct *�RTC�Pointer to an RTC KVSet handle��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows an application to get the current RTC setting on a Group.  The RTC is returned as a KV set.  The RTC settings are returned in the Completion Event, in a KVPair whose key is Group_ECTF_OutputRTC and whose value is itself a KVSet. In synchronous mode, if the output parameter RTC is not NULL, its return value points to the handle of a KVSet containing the RTC information.

Completion Event



Group_ECTF_GetRTC�Current RTC setting are returned��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_GetRTC completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Group_ECTF_RTC�CTkvs_ct�KVSet of the current RTC for the Group��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	( Invalid Group Handle

CT_errorBADPARM	( Invalid Parameter in Function Call

CT_errorBUSY	( Resource in Group is busy

CT_errorSYSTEM	( System Error

CTgrp_HandOff�Hand off a Group to another Session��Name:�CTstatus  CTgrp_HandOff (Group, ASI, Tag, Timeout, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTstring�ASI�Application Service ID of handoff destination���CTstring�Tag�Handoff return tag���CTint�Timeout�timeout value (in seconds)��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTkvs_ct�ParmList�Additional parameters passed to function���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows an application to pass a Group to another session.  The application specifies the handle of the Group to be handed off (Group), the Application Service ID to which it is to be handed off (ASI), a return tag (Tag), and a Timeout indicating the amount of time to wait to successfully complete the handoff.

This function uses the ASI (and ParmList) to find a recipient session, then proceeds with a standard handoff operation, reconfiguring the Group in the process.  If reconfiguration cannot be completed within the specified timeout, this function fails and the Group configuration and owner is unchanged.

While the handoff operation is in progress, the application that initiated handoff does NOT have control of the Group.  All events received by the Group during the handoff process are queued for subsequent delivery to whatever session has control of the Group after the CTgrp_HandOff() call is complete.

The tag argument indicates the conditions under which this application wants Group ownership to be returned. If tag is set to NULL, it indicates that this session does not want the Group to be returned.  Any other string indicates that the session is prepared to have the Group returned eventually.  The semantics of the return tag are documented elsewhere in this chapter.

The event sent to the receiving session is Group_ECTF_Arrival.  The issuing session receives the SCR_ECTF_HandOff completion event.

Completion Event



GROUP_ECTF_Handoff�Handoff has completed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Handoff completion event��Message_ECTF_Error�CTuint�The possible Errors are described below��Cautions

Because the Group is usually reconfigured during the handoff process, it should be in a quiescent state at this time.

Also, Resources may be detached from the Group during the reconfiguration process.  If any of these Resources generate any events during the handoff process prior to being detached, these events will be delivered to whatever session has control of the Group after the CTgrp_HandOff() call is complete.

A session that successfully hands off a Group but remains on the ownership stack and the Group handle is still valid. If the session receives the unsolicited event Group_ECTF_Unwind, then the session has been removed from the ownership stack and the Group handle is no longer valid for Group operations.

OSU requests are not effected by CTgrp_Handoff.  The Group handle used for OSU is still valid after handoff.

Errors

CT_errorBADGROUP	(	Group 

CT_errorBADPARM	(	Parameter in Function Call

CT_errorSTOPPED	(	Stopped by Application

CT_errorSYSTEM	(	Error

CT_errorTIMEOUT	(	timed out

CTscr_errorBADASI	(	Application Service ID Specified

CTgrp_PutGroupInfo�Add Group Level Information��Name:�CTstatus CTgrp_PutGroupInfo(Group, KVSet, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group Handle���CTkvs_ct�KVSet�The KVSet handle��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to create a Key Value Set specific to the Group.  Group KVSets behave like all other KVSets except they operate on the Group.

The application is required to create a KVSet using CTkvs_Create() and perform a CTkvs_PutTyp() for each Key Value pair.  The CTgrp_PutGroupInfo() is then issued to establish the information with the Group.

The application is then required to destroy the KVSet using CTkvs_Destroy() once the KVSet has been set.

To clear the information the CTgrp_PutGroupInfo() is issued with a NULL KVSet (CT_kvsNULL).

Completion Event



Group_ECTF_PutGroupInfo�GroupInfo has been set��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_PutGroupInfo completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Cautions

None.

Errors

CT_errorBADGROUP	( Invalid Group Handle

CT_errorBUSY	( Resource in Group is busy

CT_errorSYSTEM	( A system error occurred during the execution of this function.

CT_errorBADPARM	( Invalid parameter (or KVSet) specified

CTgrp_Retrieve�Retrieve a previously handed-off Group��Name:�CTstatus CTgrp_Retrieve(Group, Cause, Timeout, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Handle of Group to be retrieved���CTsymbol�Cause�Reason for retrieve (to be given to target session)���CTuint�Timeout�time limit for successful completion of function��Output:�����Standard:�CTkvs_ct�ParmList�Additional functional parameters���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows a session that has handed off a Group to retrieve that Group without waiting for the Group to be handed back by the current owner session.  The effect is as if the current owner returns the Group specifically to this session, but the action is initiated by this session, not the current owner.  The current owner and intervening sessions on the owner stack receive the Group_ECTF_Unwind event with KVPair (Group_ECTF_Cause=Cause).  The issuing session receives the Group_ECTF_Retrieve completion event. 

The Group is reconfigured to the Groupconfig in effect when the Group was handed off.  An alternative configuration may be specified using ParmList.  The input argument ParmList is used to control the reconfiguration, as if it were passed as the ParmList for  CTgrp_Configure().

An application may have a valid Group handle for three reasons: it is the current owner, it has handed off the Group with a Tag, or the app has OSU enabled on a Group that it used to own.  If the Group handle is valid only because of OSU, CTgrp_Retrieve() will fail, because the session is not on the owner stack.

Completion Event



Group_ECTF_Retrieve�Group ownership has been retrieved��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Retrieve completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the newly returned Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Cautions

If the Group can not be reconfigured for the retrieving session, the function will fail.  The Group should be minimally configured when handed off, or a new configuration should be specified when retrieving, perhaps the special groupconfig “ANY”.

 Errors

CTgrp_errorNOTONSTACK          ( The issuing session is not on the group’s owner stack

CT_errorTIMEOUT                    	(    Function timed out

CTgrp_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call

CTgrp_Return�Return a Group to a previous owner��Name:�CTstatus CTgrp_Return(Group, Tag, Timeout, ParmList,  TranInfo, Mode)��Input:�CTstring�Tag�return tag of handed-off Group���CTuint�Timeout�timeout count for successful completion of function��Output:�����Standard:�CTkvs_ct�ParmList�Additional functional parameters���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows an owner session to return a Group to a previous owner (i.e., one on the Group’s owner stack).  The session to receive the Group is the first one on the owner stack with a return tag (issued on handoff) that matches the input parameter Tag.  The new owner session receives the event Group_ECTF_Return. Intervening sessions on the owner stack receive the event Group_ECTF_Unwind with KVPair (Group_ECTF_Cause=CTgrp_uintRETURNED).  The Group is reconfigured to the groupconfig in effect when the Group was handed off; this configuration has the semantics of CTgrp_Configure(Group, ..., ParmList, ...) where ParmList is the CTgrp_Return() input argument.

If the function fails, the current owner remains in possession of the Group.

An empty Tag string matches the most recently pushed session on the owner stack.

Completion Event



Group_ECTF_Return�Group was returned to previous owner��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Return completion event.  Indicates that this session no longer owns Group��Group_ECTF_Group�CTgrp_ct�Handle of the Group.  This handle is no longer valid for Group operations��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��The session to which the Group is returned receives a Group_ECTF_Returned event.

Errors

CTgrp_errorTIMEOUT	(	Function timed out

CTgrp_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBUSY	(	Resource in Group is busy

CTgrp_SetParameters�	Set the parameters of a Group��Name:�CTstatus  CTgrp_SetParameters(Group, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group Handle���CTkvs_ct�ParmList�The KVSet specifying the parameters (and values)  to be set��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to set the parameters of the Group to those specified by the Key Value Set ParmList.  Each Key Value Pair within ParmList specifies which parameter to set (via the key) and what to set it to (via the value).  Any Group parameters that do not have new Values specified in the Key Value Set are left unaltered.

Completion Event



Group_ECTF_SetParameters�Parameters have been set on the Group��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_SetParameters completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Handle 

CT_errorBUSY	(	Resource in Group is busy

CT_errorBADPARM	(	Invalid parameter in function call

CT_errorSYSTEM	(	A system error occurred during the execution of this function.

CTgrp_SetRTC�	Set a Group level RTC��Name:�CTstatus CTgrp_SetRTC( Group, RTC, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group handle���CTkvs_ct�RTC�RTC KV Set handle��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to set a Group level RTC.  A Group level RTC remains in effect throughout the life of the Group or until a CTgrp_SetRTC() is issued with a NULL parameter. Group RTCs behave like all other RTCs except they operate on the Group.

Latent RTC validation errors will be reported as the Group_ECTF_RTCValidate event in accordance with the Group_ECTF_RTCValidate parameter set by CTgrp_SetParameters(). 

The application is required to create a KVSet using CTkvs_Create() and perform a CTkvs_PutTyp() for each Key Value pair.  (See Chapter 3.)  The CTgrp_SetRTC() is then issued to establish the RTC.

The application is then required to destroy the KVSet using CTkvsDestroy() once the RTC has been set.

To clear an RTC once it has been set CTgrp_SetRTC() is issued with a NULL KVSet: CT_kvsNULL.

Completion Event



Group_ECTF_SetRTC�RTC has been set on the Group��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_SetRTC completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Cautions

None.

Errors

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorRTCVALIDATE	(	RTC invalid in current Group

CT_errorBUSY	(	Resource in Group is busy

CTgrp_Stop�	Stop an operation��Name:�CTstatus CTgrp_Stop(Group,  TranInfo, Mode)��Input:�CTgrp_ct�Group�Group handle��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function stops all current functions in progress in the Group.  In particular, all resource activity is stopped.   The function completes after all Group functions have completed, at which time the Group_ECTF_Stop completion  event is returned. 

Completion Event



Group_ECTF_Stop�Transaction on Group has been stopped��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTgrp_Stop completion event.��Group_ECTF_Group�CTgrp_ct�Handle of the Group��Group_ECTF_ACT�void*�Group ACT for the Group.  The value and usage of the value is determined by the application.��Message_ECTF_Error�CTerror�Possible error values are shown below��Errors

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBUSY	(	Resource in Group is busy

CTgrp_WaitGroup�Wait for a Group to be Handed Off��Name:�CTstatus CTgrp_WaitGroup(Session, Group, ACT, Timeout, TranInfo)��Input:�CTses_ct�Session�session on which to wait���CTuint�Timeout�timeout count for successful completion of function��Output:�CTgrp_ct *�Group�Handle of the delivered Group���void *�ACT�Application Context Token of Group��Standard:�CTkvs_ct�ParmList�Additional functional parameters���CTtranInfo*�TranInfo�Transaction Information struct pointer��Return:�Standard CTstatus values. ���Description

This is a synchronous helper function blocks until a Group is sent to the session specified in input argument Session.  This function waits for a Group event to be delivered to session, returns that event in TranInfo, and extracts the Group handle and ACT.  The function returns after Timeout milliseconds, or when one of the following events is received:

Group_ECTF_Arrival (Group, ACT, ASI), 

Group_ECTF_Returned (Group, ACT, TAG) 

Group_ECTF_Unwind (Group, ACT, Cause)

These events indicate, respectively that one of the following has happened:

The Group has been handed-off to this session.

A Group has been returned to this session.

A Group will not be returned to this session.

Group handles that arrive in the Group_ECTF_Create completion event do not affect this function.  This is intended to wait for Groups delivered asynchronously by other applications.

Completion Event

This function is synchronous-only, the completion information is returned in TranInfo.  Any of the following events may cause the completion of this function:



Group_ECTF_Arrival�Group has arrived from handoff��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�A Group has been handed to an ASI registered for this session��Group_ECTF_ACT�void *�The Group ACT specified in CTgrp_Request��Group_ECTF_ASI�CTstring�The ASI specified in CTgrp_Request��

Group_ECTF_Returned�Group has returned from handoff��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�A Group that was previously handed off which a Tag has been returned to this session.��Group_ECTF_ACT�void *�The Group’s ACT for this session��Group_ECTF_Tag�CTstring�The tag that was specified in CTgrp_Return��

Group_ECTF_Unwind�Group will not return from handoff��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�A Group that was previously handed off which a Tag has been returned to this session.��Group_ECTF_ACT�void *�The Group’s ACT for this session��Message_ECTF_Qualifier�CTuint�Indicates why ownership is being changed, one of:

CTgrp_uintDESTROYED�CTgrp_uintRETURNED�CTgrp_uintRETRIEVED��Group_ECTF_Cause�CTuint�The cause that was specified in CTgrp_Retrieve or CTgrp_uintDESTROYED or CTgrp_uintRETURNED.��Cautions

None.

Errors

CT_errorTIMEOUT	( Function timed out

CT_errorBADPARM	( Invalid Parameter in Function Call

CTgrp_errorBADGROUP		(  Invalid Group Handle

�� AUTONUMLGL �6.�	System Call Router�xe "System Call Router" \b��xe "services:System Call Router (SCR)" \b��xe "call control:System Call Router" \b�

�autonumlgl �6.1.�	Introduction

The System Call Router (SCR) is a system service that performs routine call control tasks for computer telephony applications. It is built upon lower-level call control services that have specialized knowledge of the call control environment in which the S.100 server operates. By using SCR, many applications do not need to use either a call control API or the Group Management API.

The ECTF framework allows any call control environment to be supported.  Whatever call control architecture and call control API is used, applications may access the associated media stream via a call channel resource.  Applications that want portability across call control APIs and that do only simple call control operations can use the System Call Router (SCR) and the SCR API to manage call control.

Although the S.100 frameworkl posits a single SCR that manages all call control interfaces in the server, the implementation is expected to be a single SCR that delegates the real work of call control to a number of “sub-SCR” implementations, one for each call control API or call control framework being used in the server.  This feature makes it easy to implement an SCR for any particular call control API or with features that are optimized for a given call control environment.  It is even possible to layer or link various SCR implementations to provide seamless integration of heterogeneous call control providers.

�autonumlgl �6.2.�	Program Interface Overview�xe "System Call Router:overview"�

�autonumlgl �6.2.1.�	Functional Overview

The basic functions for which the SCR is responsible are

choosing the appropriate line device for outbound calls

making outbound calls

detecting inbound calls 

configuring the call channel for a call into a Group

choosing the appropriate application to handle a call

providing an ASI based interface for Group Handoff

transferring calls out of the S.100 server

A relatively small set of SCR functions, together with system configuration information supplied by the system administrator, allows most of the complexities of call control to be hidden from the application.

The following sections will describe inbound and outbound call handling, call transfer, and Group handoff in more detail, explaining which parts of these operations are transparent to the user of SCR and which parts are used by the SCR-aware application.  Some details, such as the events issued by various functions, are deferred to the Functional Details section.

�autonumlgl �6.2.2.�	Inbound Call Handling�xe "inbound call handling"��xe "system call router:inbound call handling"�

When an inbound call reaches the call control provider or Telephony Service Provider (TSP) used by the SCR, the SCR is alerted in some fashion depending on the call control environment of that TSP.  Typically this is a call arrival event identifying the call channel on which the call arrived, and possibly including other related information, e.g. trunk ID, DNIS, ANI, required bandwidth.  The SCR responds by identifying the appropriate call channel resource�, creating a Group containing that call channel resource, answering the call (thereby activating the call channel) and handing-off the Group to an appropriate application.

A Call Channel Resource (CCR) represents the media stream of a call. (Details of the CCR are provided in Chapter 11).  Mapping from the TSP’s name or view of the call channel to the appropriate S.100 Call Channel Resource depends on the API provided by the TSP, and the SCR uses the conventions defined for that call control environment.  Once the mapping is made, the SCR creates a Group with that CCR as the primary resource.

The interesting task of the SCR is to choose an appropriate ASI to process the call.  The choice of ASI is based on the inbound routing rules of the SCR and how those rules were configured by the system installer or administrator.  The rules relate the information contained in the call arrival event (ANI, DNIS, etc.) to an �xe "Application Service ID"�Application Service ID (ASI).  

Once the ASI is determined, the SCR locates a session registered for that ASI.  The ASI registration for a session includes other information used when handing off the call:

An ASI registered for use with the SCR has an associated “�xe "advertising count"�advertising count”, the SCR will not hand more Groups to a session than it has requested in the advertising count.  

An ASI definition indicates whether the Group should be handed-off before or after the call is answered.

An ASI definition also defines a new configuration for the Group.  The Group will not be handed to the session unless and until the Group can be successfully reconfigured.

The SCR processes all these conditions and eventually hands the Group to an application for processing.

A Group may be delivered to an application with the call already answered, or still in the alerting state. In the latter case, the application can answer the call using the function CTscr_AnswerCall().�xe "functions:CTscr_AnswerCall()"�

Nearly all of the above operations are performed by the SCR transparent to the application.  The application’s responsibility is to define a valid Application Profile that defines ASIs and Groups.  The responsibility of the system administrator is to ensure that the SCR’s routing rules choose ASIs that are defined in the installed applications, and that the Application Profiles of these installed applications are valid with respect to the server configuration.  The only programmatic requirement of the application is to establish an association between the ASI and a session.  This is done via the function CTscr_RequestGroup().�xe "functions:CTscr_RequestGroup()"�

�autonumlgl �6.2.3.�	Outbound Call Handling �xe "outbound call handling"��xe "System Call Router:outbound call handling"�

An application initiates an outbound call using the function �xe "functions:CTscr_MakeCall()"�CTscr_MakeCall().  In response, the SCR responds by choosing a appropriate line for originating the call, initiating the call using the TSP’s internal API, finding the Call Channel resource for the call, configuring it into a Group and handing that Group the an appropriate application for processing.

To determine the correct line to use, the SCR examines a set of outbound routing rules defined and configured by the system installer or administrator.  The exact format and content of the rules are implementation dependent but typically the destination address and other factors like the type of call and time of day are used to choose the correct TSP and line device.

Once the correct line or provider is decided, the SCR uses the TSP’s internal API to establish the call and determine the associated Call Channel resource.  The SCR must handle exception conditions such as glare (i.e., incoming call on the chosen channel) by either finding an alternate usable channel or returning a failure code to the application.

Once a call is established, a Group is configured with the call channel resource, and handed-off to a session for processing.  For outbound calls, the session to process the call is determined by an ASI specified in CTscr_MakeCall().  In the simplest case , the Group is delivered to the session that initiated the call.  

�xe "Application Service ID"�Based on the ASI, the SCR locates a session to receive the Group.  The ASI registration for a session includes other information used when handing off the call:

An ASI registered for use with the SCR has an associated “advertising count”, the SCR will not hand more Groups to a session than it has requested in the advertising count.

An ASI definition indicates whether the Group is handed-off before or after the call is answered.  

An ASI definition also defines a new configuration for the Group.  The Group will not be handed to the session unless and until the Group can be successfully reconfigured.

If the Group is to be processed by the initiating session, it may specify a NULL ASI.  In that case, the Group configuration and other information is obtained from the arguments to CTscr_MakeCall().

The SCR processes all these conditions and eventually hands the Group to an application for processing.

� AUTONUMLGL �6.2.4.�	Call Transfer�xe "SCR call transfer"��xe "System Call Router:call transfer"�

The SCR supports the call transfer capability to allow simple media applications to transfer a call, in particular, to transfer a call out of the S.100 server to a live agent.  

CTscr_Transfer()�xe "functions:CTscr_Transfer"� connects an existing call (the original call) to another destination.  The other destination party can be specified as either a destination address (a blind transfer) or the destination can be a Group which contains the call channel of an existing call to the destination party (that is, the Group represents a consultation call).  In either case, the SCR endeavors to connect the party of the original call to the destination party using whatever switching technology is available and appropriate.

The technique used by the SCR to connect to existing calls varies depending on the situation.  In some cases, the calls can be connected using an external switch common to both calls, if the SCR has control over that switch.  For example, if the SCR is managing lines behind a PBX, the SCR may be able to use a �xe "CTI link"�CTI link into the PBX to effect the transfer of the call.  

Other times, the only controllable switch fabric common to the two calls is the S.100 server’s internal switch fabric�xe "switch fabric"�.  This may be the case, for instance, when the S.100 server is a PBX.  In these cases, the SCR can effect the transfer using inter-Group connections.  

When the transfer is accomplished by an external switch, there may be restrictions on how the consultation call is created.  For those cases, the SCR provides a the function CTscr_MakeConsultationCall()�xe "functions:CTscr_MakeConsultationCall()"�that will make a consultation call that is associated with the original call, thereby ensuring that the transfer can be completed by the external switch.  This function provides the common and pragmatic interface in which the original call is placed hold, and the consultation call is initiated using the same line as the original call.  Using this function, one call channel is shared by both calls.

In contrast, if the �xe "consultation call"�consultation call is initiated using CTscr_MakeCall(), it is guaranteed to be on a different call channel, and in a different Group than the original call.  The original call is still active even while the application is “talking” to the consultation call.  This is significant if the original caller wants to listen, interrupt or otherwise control the system while the consultation call is active.

When making a �xe "blind transfer"�blind transfer, the distinction of how the call is transferred is not generally apparent to the application.  The SCR may implement blind transfer using either technique.  

When a consultation call has been made by either alternative, the application can then transfer the original call and the consultation call via �xe "functions:CTscr_TransferCall()"�CTscr_TransferCall().  The Groups corresponding to the original call and consultation call are passed as arguments.  A transfer in which both calls are on the same interface is indicated by passing the same Group as the original and the consultation Group.

A “blind” transfer is done by leaving the consultation Group argument NULL and passing the KVPair (SCR_ECTF_Destination= <dialable address>) in the ParmList argument. 

�autonumlgl �6.2.5.�	Handing off a Group�xe "group handoff"��xe "System Call Router:group handoff"�

The System Call Router uses the Group handoff functionality provided by the Group Manager and the service registration functionality of the Session Manager to simplify Group handoff for the application.

When the SCR creates a Group, it uses the TSP API to monitor all events about the call channel that signal abnormal call conditions, such as a disconnected call, equipment failure, and other similar events.  When the Group is handed off, the SCR establishes a tag “SCR”, keeping a handle to the Group.  Therefore, the SCR can use CTgrp_Retrieve() to get back the Group, and inform the application, via a Cause code, that the Group is CTscr_uintOUTOFSERVICE or any other cause code as appropriate.



�autonumlgl �6.3.�	Function Summary�xe "functions:System Call Router function summary"�



Function�Description��CTscr_AnswerCall(Group, Timeout, ParmList, TranInfo, Mode)�Answer a call presented at an ALERTING state to a Group��CTscr_DropCall(Group, Timeout, ParmList, TranInfo, Mode)�Disconnect a call��CTscr_MakeCall (Session, DestAddr, ASI, Config, Timeout, ParmList, TranInfo, Mode)�Make an outbound call and hand off the Group��CTscr_MakeConsultationCall(Group, DestAddress, Timeout, ParmList, TranInfo, Mode)�Make a consultation call using Group��CTscr_RequestGroup(Session, ASI, ACT, ParmList, TranInfo, Mode)�Request a Group from the SCR��CTscr_SendMessage(Group, Timeout, ParmList, TranInfo, Mode)�Send SCR-specific call control request��CTscr_TransferCall(OrigGroup, DestGroup, Timeout, ParmList, TranInfo, Mode)�Transfer call from OrigGroup to DestGroup��

�autonumlgl �6.4.�	Type and Constant Definitions

The following section describes the data definitions including any types, parameters, error codes and constants used by this program interface.

�autonumlgl �6.4.1.�	Error Codes

All errors listed below are of type CTerror.



Table � SEQ Table \* ARABIC �28�: SCR Error Codes



Error Code Name�Description��CT_errorBADGROUP�Invalid Group��CT_errorBADPARM�Invalid Parameter in Function Call��CT_errorBADSESSION�Invalid Session Handle specified��CT_errorSTOPPED�Function Stopped by Application��CT_errorSYSTEM�System Error��CT_errorTIMEOUT�Function timed out��CTscr_errorBADASI�Invalid ASI��CTscr_errorOUTOFSERVICE�Equipment in Group is out of service��CTscr_errorNODONOR�Donor Session no longer exists���autonumlgl �6.4.2.�	Miscellaneous Constants



Table � SEQ Table \* ARABIC �29�: SCR Constants



Constant Name�Type�Description��CTscr_uintINCREMENT�CTuint�This increments by one the number of Groups which the application wishes to receive��CTscr_uintUNLIMITED�CTuint�This sets to unlimited the number of Groups which the application wishes to receive��CTscr_uintCANCEL�CTuint�This cancels all pending requests by this session for a Group��

�autonumlgl �6.5.�	Unsolicited Events



SCR_ECTF_Message�SCR extension event��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�SCR extension event message. the meaning and content is defined by the SCR implementation��SCR_Vendor_ItemName��The SCR vendor will define the Keys, types and values used in the extension messages.  See the documentation of the vendor-specific SCR implementation for details.����autonumlgl �	SCR Function Definitions



CTscr_AnswerCall�Answer an alerting call��Name:�CTstatus  CTscr_AnswerCall (Group, Timeout, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTint�Timeout�timeout value (in milliseconds)��Output:�None����Standard:�CTkvs_ct�ParmList�Additional parameters passed to function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function uses the SCR’s internal call control interface to answer a call.  This function expects the handle of a Group in which a CCR resource has an attached call in the ALERTING state (i.e., SCR_ECTF_InboundCallState==CTscr_uintALERTING).  

If the function does not succeed (presumably because the call disconnected before being answered), the function returns CTstatus_FAIL with error code CTscr_errorDISCONNECTED.

Completion Event



SCR_ECTF_AnswerCall�Answer Call has completed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTscr_AnswerCall completion event��Message_ECTF_Error�CTuint�The possible Errors are described below��Errors

CT_errorBADGROUP	(	Invalid Group 

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSTOPPED	(	Function Stopped by Application

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CT_errorDISCONNECTED	(	Call disconnected before it could be answered

CTscr_DropCall�Disconnect a call without releasing Group��Name:�CTstatus  CTscr_DropCall (Group, Timeout, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTint�Timeout�timeout value (in seconds)��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTkvs_ct�ParmList�Additional parameters passed to function���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function uses the SCR’s internal call control interface to drop a call.  The Group remains in the possession of the session with the CCR resource in the IDLE inbound call state.

This function expects the handle of a Group in which a CCR resource has an attached call in the CONNECTED state (i.e., SCR_ECTF_InboundCallState==CTscr_uintCONNECTED). 

This function can be used when the application wishes to drop a call on the Group but keep ownership of the Group, perhaps for accounting or statistics gathering purposes.

If a consultation call is active, or on-hold, when this function is called, the state of that call and the call channel is not specified.  In some installations Drop may cause completion of a pending transfer, but that side-effect is not standard.  Use the internal call control API or SCR defined extensions to manage multiple calls on a single Group.

Completion Event



SCR_ECTF_DropCall�Drop Call has completed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTscr_DropCall completion event��Message_ECTF_Error�CTuint�The possible Errors are described below��Errors

CT_errorBADGROUP	(	Invalid Group 

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSTOPPED	(	Function Stopped by Application

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTscr_errorCOULDNOTDROP	(	Call could not be dropped (for some hardware-specific reason)

CTscr_MakeConsultationCall�Make a consultation call on the same line��Name:�CTstatus  CTscr_MakeConsultationCall (Group, DestAddress, Timeout, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTstring�DestAddress�Dialable address of consultation call���CTint�Timeout�timeout value (in seconds)��Output:�None����Standard:�CTkvs_ct�ParmList�Additional parameters passed to function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to make a consultation call to DestAddress using the line and CCR already in Group, and already active with another call.  The call currently on this line is placed on hold as a result of this function.  The original call and the consultation call can later be connected using Transfer or Conference.

If the call does not answer within the timeout interval (e.g., busy, other failure), the function fails and returns error code CTscr_errorNOTANSWERED.

If the function completes successfully, the application can call CTscr_TransferCall() as documented in its functional details to complete the transfer.

Completion Event

SCR_ECTF_MakeConsultationCall�Consultation Call is done��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTscr_MakeConsultationCall completion event��Message_ECTF_Error�CTuint�The possible Errors are described below��Errors

CT_errorBADGROUP	(	Invalid Group 

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSTOPPED	(	Function Stopped by Application

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTscr_errorNOTANSWERED	(	Call was not completed due to busy signal or other failure

CTscr_MakeCall�Make an outbound call and hand off the Group��Name:�CTstatus  CTscr_MakeCall (Session, DestAddr, ASI, Config, Timeout, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Session object handle���CTstring�DestAddr�destination address (i.e., a dialable address) to call���CTstring�ASI�Application Service ID to which Group is handed-off.���CTstring�Config�Group configuration name to use for the new Group���CTint�Timeout�timeout value (in milliseconds)��Output:�CTgrp_ct�Group�Group handle of returned Group �(if Group was returned to issuing session)��Standard:�CTkvs_ct�ParmList�Additional parameters passed to the function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function instructs the System Call Router to place an outbound call.  The destination address (DestAddr) is a dialable address that is understood by the call control service provider.

In addition to initiating the call, this function is overloaded to hand the call to another ASI or configure the Group for this session.  If the input argument ASI is not null, then the Group containing the call is handed-off of to that ASI and configured accordingly.  If ASI is null (CT_stringNULL) then the Group is configured according to Config (as defined in session’s Application Profile) and ownership is given to Session.  

The SCR examines the destination address, other parameters supplied in ParmList and its outbound call routing rules to choose a call control provider and call channel resource for the new call.  That call channel is configured as the primary resource of a Group.  Any session receiving a Group created by the SCR must use Group configurations with a CCR as the primary resource.  Any other configuration will cause and error and the Group will not be delivered.

The Group arrival event delivered to the session associated with ASI will contain the following KVPairs, supplied by the SCR:

SCR_ECTF_DestAddr=destination address

SCR_ECTF_OrigAddr=originating address

SCR_ECTF_ASI=ASI used for handoff

The following parameters affect the behavior of the function.  They may be defined for the target ASI (in the Application Profile) or passed in ParmList.

SCR_ECTF_NumRings: set to a CTuint, specifies the number of rings that the SCR should wait on an alerting call before deciding that a call is not being answered.  The value specified in ParmList will override any value specified in the Application Profile.

SCR_ECTF_OutboundCallState: set to CTscr_uintALERTING or CTscr_uintCONNECTED, this parameter determines the state of the call when delivered to the session.  The value specified in ParmList will override any value specified in the Application Profile.

If the value of SCR_ECTF_OutboundCallState is CTscr_uintCONNECTED and the call cannot be completed, CTscr_MakeCall returns CT_statusFAIL with error code CTscr_errorNOTANSWERED.

In asynchronous mode, the TranInfo argument contains a transaction ID.  To terminate call placement, the application can call CTses_Stop( ) passing this transaction ID.  The SCR will be informed and abort the call.

Completion Event

If ASI is non-NULL:



SCR_ECTF_MakeCall�Make Call has completed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTscr_MakeCall completion event��Message_ECTF_Error�CTuint�The possible Errors are described below��If ASI is NULL:



SCR_ECTF_MakeCall�Make Call has completed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTscr_MakeCall completion event��Group_ECTF_Group�CTgrp_ct�Handle of Group containing the new call��SCR_ECTF_DestAddr�CTstring�Destination address dialed��SCR_ECTF_OrigAddr�CTstring�Originating address used��Message_ECTF_Error�CTuint�The possible Errors are described below��When called asynchronously with ASI = NULL, the session may also get an unsolicited Group_ECTF_Arrival event when the SCR hands the Group to this session.  This event can be ignored, the MakeCall completion event will also contain that Group handle and the SCR information.

If ASI resolves to some other session, that session will receive a Group_ECTF_Arrival event.

Cautions

None.

Errors

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADSESSION	(	Invalid Session Handle

CT_errorSTOPPED	(	Function Stopped by Application

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTscr_errorNOTANSWERED	(	Call that was supposed to be delivered in CONNECTED state did not answer.

CTscr_errorBADASI	(	Invalid Application Service ID Specified

CTscr_RequestGroup�Request a Group from the SCR��Name:�CTstatus  CTscr_RequestGroup(Session, ASI, ACT, ParmList, TranInfo, Mode)��Input:�CTses_ct�Session�Session object handle���CTstring�ASI�Pointer to Unicode string containing Application Service ID���CTstring�ACT�An Application Context Token that will be associated with the Group when a Group is handed off to session..��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTkvs_ct�ParmList�Additional parameters passed to function���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This registers session as a target for Groups handed off to ASI using CTgrp_Handoff().

Attributes of ASI may be defined in the Application Profile or in ParmList.

Advertising Count

By default the application will receive one Group for every call to CTscr_RequestGroup(). If the applications wishes to receive more than one Group, or it wishes to cancel an outstanding CTscr_RequestGroup() registration, then it can call this function and pass the KV Pair SCR_ECTF_AdvertCount in the ParmList argument with the value set to one of the following:-

any numeric value between 1 and 4,000,000,000.  It can also take the following several discrete values:

CTscr_advcntINCREMENT	This increments by one the number of Groups which the application wishes to receive.

CTscr_advcntUNLIMITED	This sets to unlimited the number of Groups which the application wishes to receive.

CTscr_advcntCANCEL	This cancels all pending requests by this session for a Group. Note that the same effect can be achieved by explicitly setting the advertising count to zero.  Also note that when canceling a pending request, the correct ASI must be specified.

Completion Events

Upon successful completion, this function will have advertised the specified Session and ASI, or cancelled a previous advertisement for same.

When the SCR subsequently hands a Group to this session, either due to an inbound call, an outbound call or a handoff request by another application, the receiving session will be so notified by the delivery of a Group_ECTF_Arrival event containing the following Key Value pairs:

Group_ECTF_Group 	=	handle of Group handed-off.

Group_ECTF_ACT 	=	the ACT value specified in 

			CTscr_RequestGroup().

Group_ECTF_ASI 	= 	the ASI specified in the CTgrp_Handoff() call, i.e. the ASI for which the receiving application registered.  The advertising count of this ASI for this session has been decremented.

When an application receives a Group from the SCR, it will be configured as defined by the Application Service template - in the requestor's Application Profile - associated with the specified ASI.

When this function is issued asynchronously, it generates a SCR_ECTF_RequestGroup completion event when done.  In addition to the standard fields, this completion event also contains a key-value pair with the following key name, type and meaning:

SCR_ECTF_UnreceivedCount	This Session's advertising count prior to the successful execution of this command.

Completion Event



SCR_ECTF_RequestGroup�Request Group has completed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTscr_RequestGroup completion event��Message_ECTF_Error�CTuint�The possible Errors are described below��Cautions

Note that if the application expects to receive the Group with a call in the alerting state, it is the application's responsibility to either answer the call using CTscr_AnswerCall() or the TSP’s call control API.

It is recommended that the application check the current state of the call received.  If the call has been disconnected, the application should usually return the Group.

Errors

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADSESSION	(	Invalid Session Handle

CT_errorSYSTEM	(	System Error

CTscr_errorBADASI	(	Invalid Application Service ID Specified

CTscr_SendMessage�Send an SCR Extension message��Name:�CTstatus  CTscr_SendMessage (Group, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTkvs_ct�ParmList�KVSet representing a message to go to the switching domain call control interface��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

Send Message to the SCR responsible for the Group.  This will be the SCR that controls the call channel in the Group.  

If the Group does not have a call channel resource, the function will return an error.In other respects, this function operates like CTses_SendMessage().  

This function provides an extension mechanism for the SCR to access additional services defined by a particular SCR implementation..  The input argument ParmList (key Message_ECTF_ParmList) is a KVSet whose KVPairs are defined and documented by a particular SCR implementation.  This mechanism could be used by an SCR to allow access to a TSP’s internal call control API.

Completion Event



SCR_ECTF_SendMessage�SCR SendMessage completion event��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTscr_SendMessage completion event��SCR_ECTF_<TBD>�<TBD>�various KVPairs, as specified by an SCR��Message_ECTF_Error�CTuint�The possible Errors are described below��Cautions

Use of this function may make an application non-portable - it is dependent on the SCR.

Errors

CT_errorBADGROUP	(	Invalid Group 

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSTOPPED	(	Function Stopped by Application

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CT_errorInvalidCCMessage	(	Input KVSet represented an invalid 			message

CTscr_TransferCall�Transfer an call to another party��Name:�CTstatus  CTscr_TransferCall (OrigGroup, DestGroup, Timeout, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�OrigGroup�Handle of Group with original call���CTgrp_ct�DestGroup�Handle of Group with consultation call���CTint�Timeout�timeout value (in milliseconds)��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTkvs_ct�ParmList�Additional parameters passed to function���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function transfers an originating call, attached to a valid Group whose handle is in OrigGroup, either to a new destination address (in the case of a blind transfer) or to a consultation call.

If the destination of the transfer is a call channel in a separate Group, then the input argument DestGroup identifies that Group.  The SCR does whatever is necessary to connect the party in OrigGroup to the party in DestGroup.  

If the destination is a consultation call established using CTscr_MakeConsultationCall(), then both calls are on the same Group, and that Group should be supplied for OrigGroup and DestGroup.

To effect a blind transfer, DestGroup must be set to CTgrp_ctNULL  and the destination address supplied in ParmList using the KVPair (SCR_ECTF_DestAddress==<dialable address>).

In either case, if the transfer succeeds, both OrigGroup and DestGroup are retrieved from the application by the SCR and may be reconfigured or destroyed.

Completion Event



SCR_ECTF_TransferCall�Transfer Call has completed��Event specific keys�Value Type�Description��Message_ECTF_EventID�CTsymbol�CTscr_TransferCall completion event��Message_ECTF_Error�CTuint�The possible Errors are described below��Errors

CT_errorBADGROUP	(	Invalid Group 

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSTOPPED	(	Function Stopped by Application

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CT_errorNOCONSULTATIONCALL	(	No consultation call was found

CT_errorBADDESTADDRESS	(	The destination address for a blind transfer was invalid

CT_errorCALLDROPPED	(	One of the calls dropped before the transfer could be made





�� AUTONUMLGL �7.�	 Connection/Conferencing Management�xe "connection/conferencing management" \b��xe "services:connection/conferencing management" \b�

�autonumlgl �	Introduction

The S.100 Connection/Conferencing Management Application Program Interface is a set of standard program interfaces for managing the �xe "Groups:interconnection"��xe "group:conferencing"�interconnection of multiple Groups controlling media processing Resources.  Since a Group typically represents a party to a call, this API permits the following:

calls can be switched from one party to another;

one party can monitor two other parties; and

multiple parties can be conferenced together (with the assistance of a conferencing resource).

It is vendor and client operating system independent.



�autonumlgl �	Function Summary

�autonumlgl �	Connecting and Monitoring Functions�xe "functions:connecting and monitoring functions"�



Function�Description��CTconn_Break (Conn, Dir, TranInfo, Mode)�Deactivate the specified connection��CTconn_Create (Conn, Target, Group, Parms, Timeout, TranInfo, Mode)�Create a connection between the target object and a Group��CTconn_Destroy (Conn, TranInfo, Mode)�Destroy the specified connection��CTconn_GetParameters (Conn, Keys, KeyCount, OutputParameters, TranInfo, Mode)�Obtain the specified connection's parameter values��CTconn_Make (Conn, Dir, TranInfo, Mode)�Activate the specified connection��CTconn_SetParameters (Conn, Parms, TranInfo, Mode)�Change the specified connection's parameter values���autonumlgl �	Conferencing Functions�xe "functions:conferencing functions"�



Function�Description��CTconf_Create (Conf, Session, Bridge, MaxParties, Parms, Timeout, TranInfo, Mode)�Create a Conference using the specified bridge��CTconf_Destroy (Conf, TranInfo, Mode)�Destroy the specified Conference��CTconf_GetParameters (Conf, Keys, KeyCount, OutputParameters, TranInfo, Mode)�Obtain the specified Conference bridge's parameter values��CTconf_SetParameters (Conf, Parms, TranInfo, Mode)�Change the specified Conference bridge's parameter values��

�autonumlgl �	Object Overview�xe "connection/conferencing:overview"�

The purpose of the Connection/Conferencing Management API is to provide the facilities required to allow multiple parties to listen to each other or to media services applications.  The following subsections discuss the types of connections that are supported, and the S.100 objects used to provide these connections.

�autonumlgl �	Connections, Monitors, and Conferences�xe "connection"��xe "conference"��xe "monitor"�

There are three types of connections which may be created and managed by the Connection/Conferencing Management API:

Inter-Group connections�xe "connection:inter-group connection"�, which allow data originating in a Resource of one Group to be received by a Resource in another Group.  This connection is effected by creating a circuit on the transport facilities of the S.100 server.  This connection models the “drop-and-insert” facility of a PBX, but, because a “party” can be a Group, a connection can support applications that support voice, FAX, modem, and other data types.

Monitor connections�xe "connection:monitor connection"�, which allow a Group to receive the data that is transmitted on an Inter-Group connection between other Groups.  This connection models the operator monitor facility of a PBX.

Conference connections�xe "connection:conference connection"�, in which a conference bridge device is allocated to a conference, and multiple Groups are connected to ports on the conference bridge.

�autonumlgl �	Switch Port

A Switch Port�xe "Switch Port" \b� is a Resource whose function is to connect the data streams of other resources. It may be thought of as an isochronous circuit that behaves as a Resource.  Switch Ports are used to create Inter-Group Connections and Monitor Connections.

A Switch Port may be either a Primary or Secondary Resource�xe "resource:primary resource"��xe "resource:secondary resource"�. If a Group configuration does not explicitly declare a Switch Port, one is automatically attached to the Group as a Secondary Resource.  When the Connection/Conferencing API is used to connect two or more Groups together, the connections are actually made to the Groups’ corresponding Switch Ports.

The bandwidth of a Switch Port �xe "switch port:bandwidth"�of a Group is determined by the bandwidth of the Primary Resource (if the Switch Port is a Secondary resource), or is set equal to the bandwidth of the Secondary Resources of a Group (if it is the Primary Resource).  Switch Ports connected together to form an Inter-Group Connection must be of the same bandwidth in order for the connection to be successfully created.

Communication between a Switch Port and another Resource follow the rules discussed in Chapter 1.  A Switch Port as a Primary Resource passes any data from its inter-Group connection to all of its Secondary Resources, and listens to its Secondary Resource via the server’s access arbitration strategy (i.e.,  last talker�xe "last talker algorithm"�, first talker�xe "first talker"�, blocking�xe "blocking"�, pre-emption�xe "pre-emption"�).  A Switch Port as a Secondary Resource passes any data from the Primary Resource to its inter-Group connection, and is either normally-talking or normally-silent depending on the status of the Switch Port to which it is talking.

� INCLUDEPICTURE C:\\USR\\HENDERSA\\SCSAWA\\GRP1GRP2.WMF \* MERGEFORMAT ���

Figure � SEQ Figure \* ARABIC �11�:  Group Connection�xe "group:inter-group connection"��xe "connection:inter-group connection"�

For example, in � REF _Ref339368683 \* MERGEFORMAT �Figure 11�, the Switch Port in each Group is a Secondary Resource with a CCR as a Primary Resource.  Since a CCR is “normally-talking”, so are each of the Switch Ports, and the net effect is of a circuit between the two Primary Resources. If any of the other Secondary Resources in the first Group begin to talk, and the Last Talker arbitration scheme is in in effect, they become the “last talker” and override the Switch Port, temporarily cutting off the other Group.

� AUTONUMLGL �7.3.3.�	Monitor Connection�xe "monitor connection" \b��xe "connection:monitor connection" \b�

A monitor connection is a device that retransmits either one or both sides of an inter-Group connection to a monitoring Group.  Such a connection is less complex than a conference bridge, and may in a particular server  be implemented as a hardware or software summer, although in “real” systems they are typically implemented as a small conference bridge.  For a monitor connection that monitors only one side of a connection, it may be necessary only to allow the monitor to share a circuit on the inter-Group connection.

�xe "connection:bandwidth"�A monitor connection must match in bandwidth the bandwidth of the connection that it is monitoring.

� AUTONUMLGL �7.3.4.�	Conference Bridges�xe "conference bridge" \b��xe "connection:conference bridge" \b�

A S.100 conference bridge is a device-independent model of a conventional conference bridge, which automatically sums the inputs of multiple ports and echoes the sum to the output of the ports.  A conference bridge is not modeled as a Resource because it is used to interconnect Groups, rather than as a member of a Group.  A conference bridge, however, has parameters (e.g., number of ports, gain) that can be read and set by an application.

�xe "connection:bandwidth"��xe "switch port"�The Switch Ports of a Group attached to a conference bridge must match the conference bridge in bandwidth.  This implies that the bandwidth of the Resources in the Group must match the conference bridge’s bandwidth as well.

�autonumlgl �	Functional Overview

�autonumlgl �	�xe "connection:connecting groups"��xe "group:connecting groups"�Making a Connection Between Two Groups

Obtain two Groups to be connected.  This may be done manually, by configuring the Groups via the Group Management API (e.g.,  CTgrp_Create(), CTgrp_Configure()), or by receiving the Groups via SCR hand-offs (e.g., CTgrp_Handoff()). Each Group will have a Switch Port attached, either explicitly as a Primary Resource, or implicitly as a Secondary Resource

Create a connection between the two Groups with the desired directionality attribute using the �xe "functions:CTconn_Create()"�CTconn_Create() function.  The required circuit has now been reserved, but not yet activated.

Activate the previously created connection using the �xe "functions:CTconn_Make()"�CTconn_Make() function.  The two parties can now converse together or one party can listen to the other depending on the connection's directionality attribute.

�autonumlgl �	�xe "connection:muting Group connection"��xe "group:muting connection"�Muting a Connection Between Two Groups

Temporarily mute one party using the �xe "functions:CTconn_Break()"�CTconn_Break() function and then un-mute using the �xe "functions:CTconn_Make()"�CTconn_Make() function.

�autonumlgl �	�xe "group:disconnecting groups"��xe "connection:disconnecting groups"�Breaking a Connection Between Two Groups

Deactivate the connection using the �xe "functions:CTconn_Break()"�CTconn_Break() function.  The two parties can no longer hear each other.

Destroy the connection using the �xe "functions:CTconn_Destroy()"�CTconn_Destroy() function.  The previously allocated circuit is now freed.  The two Groups are now completely independent of each other, and can be further used as the application sees fit.

�autonumlgl �	�xe "connection:monitoring group connection"��xe "group:monitoring group connection"�Monitoring a Connection Between Two Groups

Create the basic connection to be monitored as described in the previous section.

Obtain the Group representing the party that will subsequently monitor the basic connection.

Create a monitoring connection between the previously created basic connection to be monitored and the monitoring Group using the �xe "functions:CTconn_Create()"�CTconn_Create( ) function.  The circuits and Resources required for monitoring have now been reserved.

Activate the monitoring connection using the �xe "functions:CTconn_Make()"�CTconn_Make() function.  The monitoring party can now listen to both sides of the conversation taking place over the basic connection.  This is a listen-only connection.

Deactivate the monitoring connection using the �xe "functions:CTconn_Break()"�CTconn_Break() function.  The monitoring party can no longer hear the conversation taking place over the basic connection.

Destroy the monitoring connection using the �xe "functions:CTconn_Destroy()"�CTconn_Destroy() function.  All previously allocated transport facilities and Resources required for monitoring are now freed, and the monitoring Group can be further used as the application sees fit.

Destroy the basic connection which was monitored as described in the previous section.  The original connected Groups may now be further used as the application sees fit.

�autonumlgl �	�xe "connection:conferencing multiple groups"��xe "group:conferencing multiple groups"�Conferencing Multiple Groups

Reserve conferencing ports by creating a conference using the �xe "functions:CTconf_Create()"�CTconf_Create( ) function, specifying a conferencing bridge, the number of conferencing ports from that bridge to be reserved, and other bridge attributes.

Obtain all Groups representing the parties to be subsequently conferenced together.  As before, each Group will have a Switch Port attached.

Connect the previously created conference and one of the Groups to be conferenced using the �xe "functions:CTconn_Create()"�CTconn_Create( ) function.  This will be done by connecting the Switch Port of the Group to one of the Switch Ports of the conference object (chosen by the Connection Manager).  The circuit required by this Group for conferencing have now been reserved.

Activate the conferencing connection using the �xe "functions:CTconn_Make()"�CTconn_Make() function.  The party represented by the connected Group has now been added to the conference.

Repeat steps 3 and 4 until all parties to be conferenced together have been added to the conference.

The attributes of the conference bridge can be changed via the �xe "functions:CTconf_SetParameters()"�CTconf_SetParameters() function.

The conferencing attributes of any of the parties to the conference can be changed via the CTconn_SetParameters() function.

Any of the Groups may be temporarily muted via the �xe "functions:CTconn_Break()"�CTconn_Break() and CTconn_Make() functions.

Deactivate the conferencing connection of one of the parties to the conference using the CTconn_Break() function.  The specified party can no longer participate in the conference.

Destroy the conferencing connection of one of the parties to the conference using the �xe "functions:CTconn_Destroy()"�CTconn_Destroy() function.  The previously allocated circuit required for conferencing this party is now freed.

Destroy the conference with the CTconf_Destroy() function.  This causes the ports on the conference bridge reserved for the conference to be freed.





�autonumlgl �	Unsolicited Events



Conf_ECTF_EventArrival�New conferee is joining the conference (via CTconf_Make)��Event specific keys�Value Type�Description��Conf_ECTF_ConferenceID�CTconf_ct�Handle of conference on which new conferee is arriving��Conf_ECTF_ArrivingGroup�CTconf_ct�Handle of the Group that came in on the conference, so that messages could be sent to it.��The above event is enabled by setting CONF_ECTF_Arrival to CT_uintON.



Conf_ECTF_EventDeparture�Conferee is departing the conference (via CTconn_Break)��Event specific keys�Value Type�Description��Conf_ECTF_ConferenceID�CTconf_ct�Handle of conference on which new arrivee is arriving��Conf_ECTF_DepartingGroup�CTconf_ct�Handle of the Group that came in on the conference, so that messages could be sent to it.��The above event is enabled by setting Conf_ECTF_Departure to CT_uintON.



Conf_ECTF_ConferenceDestroyed�Conference object has been destroyed (sent to all Groups connected to it)��Event specific keys�Value Type�Description��Conf_ECTF_ConferenceID�CTconf_ct�Handle of conference from which departing party is departing��

�autonumlgl �	Definitions

The following section describes the data definitions including any types, parameters, error codes and constants used by this program interface.

�autonumlgl �	Parameters

The application may examine and/or set the values of several parameters that affect the performance of this object.  The following standard parameters are defined.



Table � SEQ Table \* ARABIC �30�: Connection/Conferencing Parameters



Parameter�Type�Definition��Conn_ECTF_Monitor�CTuint�Whether connection is capable of being monitored: CT_uintON or CT_uintOFF��Conn_ECTF_Volume�CTuint�audio level  of connection of a particular connection (in dB).��Conf_ECTF_Arrival�CTuint�Conference-wide arrival notification: CT_uintON or CT_uintOFF��Conf_ECTF_Departure�CTuint�Conference-wide departure notification: CT_uintON or CT_uintOFF���autonumlgl �	Errors

All errors listed below are of type CTerror.



Table � SEQ Table \* ARABIC �31�: Connection/Conferencing Errors



Error Code Name�Description��CT_errorBADCONFIG�Invalid Bridge Configuration��CT_errorBADGROUP�Invalid Group Object��CT_errorBADPARM�Invalid Parameter in Function Call��CT_errorBADSESSION�Invalid Session Object��CT_errorBUSY�Concurrency Rule Violation��CT_errorSYSTEM�System Error��CTconn_errorBADCONFERENCE�Invalid Conference Object��CTconn_errorBADCONNECTION�Invalid Connection Object��CTconn_errorBADDIRECTION�Invalid Direction specified for Connection��CTconn_errorBADSTATE�Invalid state for function requested��CTconn_errorTIMEOUT�Connection creation request timed out due to unavailability of transport resources��CTconf_errorBADCONFERENCE�Invalid Conference Object��CTconf_errorBADMAXPARTIES�Invalid number of parties requested��CTconf_errorTIMEOUT�Conference creation request timed out due to unavailability of resources���autonumlgl �	Miscellaneous Constant Definitions



Table � SEQ Table \* ARABIC �32�: Connection/Conferencing Constants



Constant Name�Type�Description��CT_uintON�CTuint�Feature is on��CT_uintOFF�CTuint�Feature is off��CTconn_TOTARGET�CTuint�Data transmission direction for connection is toward target��CTconn_FROMTARGET�CTuint�Data transmission direction for connection is from target��CTconn_DEFAULT�CTuint�Data transmission direction for connection is maximum directions supported����autonumlgl �	Conferencing Function Definitions



CTconf_Create�tc "CTconf_Create" \l 0��Create a Conference using the specified bridge��Name:�CTstatus  CTconf_Create (ConferenceID, Session, Bridge, MaxParties, ParmList, Timeout, TranInfo, Mode)��Input:�CTsession�Session�Handle of Session to be associated with new conference���CTstring�Bridge�Pointer to ASCIIZ string containing name of conference bridge���CTuint�MaxParties�Number of conferencing ports to reserve���CTkvs�ParmList�Conference bridge parameter key/value set���CTuint�Timeout�Timeout value (in seconds)��Output:�CTconf_ct*�ConferenceID�Handle of newly created Conference��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the Client Application to create a conference (returned in the handle pointed to by Conf) by reserving MaxParties conferencing ports from the specified bridge on the Server where the Client has the specified established session.

Bridge is the name of a Conferencing Bridge Specification specified in the Conferences template of a client's Application Profile.

Conferencing options may be set for the entire conference using the Parms argument.  Any appropriate conferencing bridge parameter (e.g., party arrival and departure notification) and its value can be stored in the key/value set Parms and passed as part of the CTconf_Create() function.  If Parms is not provided, the conferencing bridge parameters will be set to their default values.

Parties can be added to this conference by using the CTconn_Create() and CTconn_Make() functions.

If all the necessary conferencing Resources cannot be allocated within the Timeout seconds, the function will fail and none of the conferencing ports will be reserved.

Multiple instances of this function may execute concurrently.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conf_ECTF_Create�Create a conference using bridge (completion event)��Event specific keys�Value Type�Description��Conf_ECTF_ConferenceID�CTconf_ct�Newly-created conference��Conf_ECTF_Error�CTerror�Error codes as listed below��Cautions

The output argument Conf is not valid until the transaction event corresponding to the API call arrives.

The Handle returned by this function is only valid inside the process in which this function was called.



Errors

CT_errorBADCONFIG	(	Invalid Bridge Configuration

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADSESSION	(	Invalid Session Object

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconf_errorBADMAXPARTIES	(	Invalid number of parties requested

CTconf_errorTIMEOUT	(	Conference creation request timed out due to unavailability of transport resources (e.g., conference bridge ports)



CTconf_Destroy�tc "CTconf_Destroy" \l 0��Destroy the specified Conference��Name:�CTstatus  CTconf_Destroy (Conf, TranInfo, Mode)��Input:�CTconf_ct�Conf�Handle of Conference to be destroyed��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

The conference object whose handle is passed as an input argument is destroyed, and the conference bridge and associated circuits from the bridge to the Switch Ports of participating Groups are freed.  The unsolicited event Conf_ECTF_ConferenceDestroyed is sent to each Group connected to the conference.

Cautions

After this function is complete, the handle will no longer be a valid reference to this object.  Further, the S.100 API implementation may re-use this handle.  Thus, using this handle after this function has completed will, at best, result in an error;  in some cases it may succeed,but with unexpected, and potentially disasterous, side-effects.



Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conf_ECTF_Destroy�Destroy specified conference (completion event))��Event specific keys�Value Type�Description��Conf_ECTF_ConferenceID�CTconf_ct�Handle of destroyed conference��Conf_ECTF_Error�CTerror�Error codes as listed below��Cautions

Note that if the conference to be destroyed is connected to any Groups at the time this function is called, those connections to the conference bridge will be automatically destroyed before the conference is destroyed, and the unsolicited event Conf_ECTF_ConferenceDestroyed will be sent to them.

Errors

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconf_errorBADCONFERENCE	(	Invalid Conference Object



CTconf_GetParameters�tc "CTconf_GetParameters" \l 0��Obtain Conference bridge's parameter values��Name:�CTstatus  CTconf_GetParameters (Conf, Keys, KeyCount, OutputParameters, TranInfo, Mode)��Input:�CTconf_ct�Conf�Handle of Conference whose parameter values are to be obtained���CTsymbol�Keys[]�Array of parameter names whose values are to be returned���CTuint�KeyCount�Number of elements in keys��Output:�CTkvs_ct*�OutputParameters�Conference parameter key/value set returned��Standard:�CTtranInfo*�TranInfo�Transaction  information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values���Description

This function is used to obtain the current values of the parameters for the conference (Conf).  The application provides a list of parameters of which it wants the value, in the array Keys[].  All parameters are returned if the Keys[] argument is set to CT_symbolarrayNULL. the input argument KeyCount should specify the number of elements in the array.  The parameters are returned in the form of a KVSet.

The parameter names and their new values are returned in the transaction event, in a KVPair whose Key is Conf_ECTF_OutputParameters and whose value is a KVSet of required parameters. In synchronous mode,  the output argument OutputParameters is a handle to a KVSet containing the required parameters.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conf_ECTF_GetParameters�Get conference parameters (completion event)��Event specific keys�Value Type�Description��Conf_ECTF_OutputParameters�CTkvs_ct�KVSet containing requested parameter KVPairs��Conf_ECTF_Error�CTerror�Error codes as listed below��Cautions

The output argument OutputParameters is not valid until the transaction event corresponding to the API call arrives.

Errors

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconf_errorBADCONFERENCE	(	Invalid Conference Object

�

CTconf_SetParameters�tc "CTconf_SetParameters" \l 0��Change Conference bridge's parameter values��Name:�CTstatus  CTconf_SetParameters (Conf, Parms, TranInfo, Mode)��Input:�CTconf_ct�Conf�Handle of Conference whose parameter values are to be changed���CTkvs�Parms�Conference parameter key/value set��Output:�None��	��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to change the values of the parameters for the specified conference (Conf).

The parameter names and their new values are specified by means of the key/value set, Parms.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conf_ECTF_SetParameters�Conference bridge parameters changed (completion event)��Event specific keys�Value Type�Description��Conf_ECTF_Error�CTerror�Error codes as listed below��Cautions

None.

Errors

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconf_errorBADCONFERENCE	(	Invalid Conference Object



CTconn_Break�tc "CTconn_Break" \l 0��Deactivate the specified connection��Name:�CTstatus  CTconn_Break (Conn, Dir, TranInfo, Mode)��Input:�CTconn_ct�Conn�Handle of Connection to be deactivated���CTuint�Dir�Directionality of activation��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to deactivate a previously activated connection (Conn). It has the effect of “muting” the talker on the connection.  The function may be used on inter-Group connections, monitors, and conferences.

Once the function has been called, data ceases to flow between the endpoints of the connection according to its direction argument (Dir).  If provided, this argument must be set to one of the following:

CTconn_TOTARGET (i.e., data ceases to flow from Group to target only)

CTconn_FROMTARGET (i.e., data ceases to flow from target to Group only)

CTconn_DEFAULT (i.e., data ceases to flow in all directions)

If not provided, Dir must be set to NULL, and in this case, the directionality of the data flow defaults to CTconn_DEFAULT.

Once a connection has been deactivated, the circuit required for the connection remain allocated.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conn_ECTF_Break�Connection deactivated (completion event)��Event specific keys�Value Type�Description��Conn_ECTF_ConnectionID�CTconn_ct�Handle of connection object to which the connection was broken��Conn_ECTF_Dir�CTuint�CTconn_uintTOTARGET or CTconn_uintFROMTARGET, specifying the direction of traffic that was broken��Conn_ECTF_Error�CTerror�Error codes as listed below��

Cautions

This function will never activate either direction of the specified connection.

If the direction argument is set to CTconn_TOTARGET or CTconn_FROMTARGET and the connection was not already active in the specified direction, this function will generate the warning CTconn_errorBADDIRECTION.

Errors

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconn_errorBADCONNECTION	(	Invalid Connection Object

CTconn_errorBADDIRECTION	(	Invalid Direction specified for Connection

CTconn_errorBADSTATE	(	Invalid state for function requested

�

CTconn_Create�tc "CTconn_Create" \l 0��Create connection between the target object and a Group��Name:�CTstatus  CTconn_Create (Connection, Target, Group, Parms, Timeout, TranInfo, Mode)��Input:�CTcls (one of CTobj_ct)�Target�CTobj_ct - handle of Group, Connection, or Conference target to be connected to Group���CTkvs_valtyp�TargetType�One of CTkvs_valtypGROUP, CTkvs_valtypCONNECTION, CTkvs_valtypCONFERENCE , denoting the type of Target���CTgrp_ct�Group�Handle of Group to be connected to target���CTkvs�Parms�Connection parameter key/value set���CTuint�Timeout�Timeout value (in seconds)��Output:�CTconn_ct*�Conn�Handle of newly created Connection��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function can be used to establish connections from a Group to an inter-Group connection, monitor, or conference, depending on the type of the Target argument. Note that no data is transferred between the end points of the connection until the connection is subsequently activated by means of the CTconn_Make() function.

Group Target:

In this case, the function serves to establish a basic full- or half-duplex inter-Group connection between the Target and the Group.

The directionality of the connection is determined by the parameter Conn_ECTF_Direction of the Resources within the two Groups which are actually communicating, adjusted by the Parms argument.  If provided, the Conn_ECTF_Direction parameter must be set to one of the following:

CTconn_TOTARGET (i.e., data will flow from Group to Target only)

CTconn_FROMTARGET (i.e., data will flow from Target to Group only)

CTconn_DEFAULT (i.e., data will flow in either or both directions according to the parameter settings of the communicating Resources).  

If not provided, Parms must be set to NULL, and in this case, the directionality of the connection defaults to CTconn_DEFAULT.

Connection Target:

In this case, the function serves to establish a half-duplex monitoring connection between the Target and the Group.

The Target argument identifies a Connection object which was previously created by this function using a Group object as the Target (see "Group Target" section above). Once this function is called again with a Connection object as the Target, the specified Group is ready to monitor both sides of the conversation being carried by the Connection Target.

Conference Target:

In this case, the function serves to establish a full- or half-duplex conference connection between the Target and the Group.

The Target argument identifies a Conference object which was previously created by the CTconf_Create() function. Once CTconn_Create() is called with a Conference object as the target, the specified Group is ready to be added to the conference identified by the Conference Target.

The directionality of the connection is determined by the parameter Conn_ECTF_Direction of the Resource(s) within the Group which are actually communicating with the conference, adjusted by the Parms argument.  

If provided, the parameter  must be set to one of the following:

CTconn_TOTARGET		the party represented by Group will only be able to transmit to the conference

CTconn_FROMTARGET		the party represented by Group will only be able to listen to the conference

CTconn_DEFAULT		the party represented by Group will be able to transmit and/or listen to the conference according to the parameter settings of the communicating party's Resources.  

If not provided, Parms must be set to NULL, and in this case, the directionality of the connection defaults to CTconn_DEFAULT.

Also, conferencing options may be set for the party represented by Group in the same way: any appropriate conferencing port parameter (e.g., audio level) and its value can be added to the same key/value set Parms and passed as part of the CTconn_Create() function.  If Parms is not provided, the conferencing port parameters will be set to their default values.

Once any type of connection has been established, all required data transport resources have been allocated such that a later activation of the connection - via CTconn_Make() - is guaranteed to succeed.

The Timeout argument is used to indicate the amount of time (in seconds) that the system will wait for the required data transport resources before returning an error.

The handle of the created connection is returned in the transaction event, in a KVPair whose Key is Conn_ECTF_Connection and whose value is the Connection handle. In synchronous mode, if the output argument Conn is not NULL, its return value points to the handle of the Connection.

Multiple instances of this function may execute concurrently.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conn_ECTF_Create�Connection created between target and Group (completion event)��Event specific keys�Value Type�Description��Conn_ECTF_ConnectionID�CTconn_ct�Handle of connection object that was created��Conn_ECTF_Target�CTconn_ct�Valid handle to the target (of whichever type)��Conn_ECTF_TargetType�CTkvs_valtyp�one of CTkvs_valtypGROUP, CTkvs_valtypCONNECTION, or CTkvs_valtypCONFERENCE��Conn_ECTF_Error�CTerror�Error codes as listed below��Cautions

The Session associated with the Target and Group arguments must be the same, or a CT_errorBADSESSION error will be returned.

If the direction parameter is set to CTconn_TOTARGET or CTconn_FROMTARGET and the communicating Resources do not support that directionality, this function will fail with error CTconn_errorBADDIRECTION.

Conflicting connections may be created if so desired (i.e., connections with different transmission source endpoints but the same destination endpoint). However, only one of those conflicting connections may be active at any time.

The output parameter Conn is not valid until the transaction event corresponding to the API call arrives.

The Handle returned by this function is only valid inside the process in which this function was called.



Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADSESSION	(	Invalid Session Object

CT_errorSYSTEM	(	System Error

CTconn_errorBADCONFERENCE	(	Invalid Conference Object

CTconn_errorBADCONNECTION	(	Invalid Connection Object

CTconn_errorBADDIRECTION	(	Invalid Direction specified for Connection

CTconn_errorTIMEOUT	(	Connection creation request timed out due to unavailability of transport resources



CTconn_Destroy�tc "CTconn_Destroy" \l 0��Destroy connection��Name:�CTstatus  CTconn_Destroy (Connection, TranInfo, Mode)��Input:�CTconn_ct�Connection�Handle of Connection to be destroyed��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to destroy the specified connection (Conn) to an inter-Group connection, monitor connection, or conference.

Once the connection is destroyed, all previously allocated circuits are freed.

Cautions

After this function is complete, the handle will no longer be a valid reference to this object.  Further, the S.100 API implementation may re-use this handle.  Thus, using this handle after this function has completed will, at best, result in an error;  in some cases it may succeed,but with unexpected, and potentially disasterous, side-effects.

Note that if a connection is activated at the time this function is called, it will be automatically deactivated before being destroyed.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conn_ECTF_Destroy�Connection Destroyed (completion event)��Event specific keys�Value Type�Description��Conn_ECTF_ConnectionID�CTconn_ct�Handle of connection object to which the connection was broken��Conn_ECTF_Error�CTerror�Error codes as listed below��Errors

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconn_errorBADCONNECTION	(	Invalid Connection Object



CTconn_GetParameters�tc "CTconn_GetParameters" \l 0��Obtain connection's parameter values��Name:�CTstatus  CTconn_GetParameters (Connection, Keys, KeyCount, OutputParameters, TranInfo, Mode)��Input:�CTconn_ct�Connection�Handle of Connection whose parameter values are to be obtained���CTsymbol�Keys[]�Array of parameter names whose values are to be returned���CTuint�KeyCount�Number of elements of keys��Output:�CTkvs_ct*�OutputParameters�Connection parameter KVSet returned��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to obtain the current values of the parameters for the connection (Connection).  The application provides a list of parameters of which it wants the value, in the array Keys[].  All parameters are returned if the Keys[] argument is set to CT_symArrayNull.  The input argument Keycount  should be set to the number of elements of Keys.  The parameters are returned in the form of a KVSet.

The parameter names and their new values are returned in the transaction event, in a KVPair whose key is Conn_ECTF_OutputParameters and whose value is a KVSet with the required parameters.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conn_ECTF_GetParameters�Parameters retrieved (completion event)��Event specific keys�Value Type�Description��Conn_ECTF_OutputParameters�CTkvs_ct�Returned parameters��Conn_ECTF_Error�CTerror�Error codes as listed below��Cautions

The output argument OutputParameters is not valid until the transaction event corresponding to the API call arrives.

Errors

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconn_errorBADCONNECTION	(	Invalid Connection Object



CTconn_Make�tc "CTconn_Make" \l 0��	Activate connection��Name:�CTstatus  CTconn_Make (Connection, Dir, TranInfo, Mode)��Input:�CTconn_ct�Connection�Handle of Connection to be activated���CTuint�Dir�Directionality of activation��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to activate a previously created (or deactivated) connection (Connection) to an inter-Group connection, monitor connection, or conference.

Once the function has been called, data begins to flow between the endpoints of the connection according to its direction argument (Dir).  If provided, this argument must be set to one of the following:

CTconn_TOTARGET (i.e., data flows from Group to target only)

CTconn_FROMTARGET (i.e., data flows from target to Group only)

CTconn_DEFAULT (i.e., data flows in all directions supported by the connection). 

If not provided, Dir must be set to NULL, and in this case, the directionality of the data flow defaults to CTconn_DEFAULT.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conn_ECTF_Make�Connection activated (completion event)��Event specific keys�Value Type�Description��Conn_ECTF_ConnectionID�CTconn_ct�Handle of connection object which was activated��Conn_ECTF_Dir�CTuint�CTconn_uintTOTARGET or CTconn_uintFROMTARGET, specifying the direction of traffic that was activated��Conn_ECTF_Error�CTerror�Error codes as listed below��

Cautions

This function will never deactivate either direction of the specified connection.

If the direction parameter is set to CTconn_TOTARGET or CTconn_FROMTARGET and the connection does not support that directionality, this function will fail with error CTconn_errorBADDIRECTION.

Conflicting connections may be created if so desired (i.e., connections with different transmission source endpoints but the same destination endpoint).  However, only one of those conflicting connections may be active at any time.  If the execution of this function would create a conflicting connection, the function will fail with error CTconn_errorCONFLICT.

Errors

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconn_errorBADCONNECTION	(	Invalid Connection Object

CTconn_errorBADDIRECTION	(	Invalid Direction specified for Connection

CTconn_errorBADSTATE	(	Invalid state for function requested

CTconn_errorCONFLICT	(	Proposed connection would conflict with existing activated connection



CTconn_SetParameters�tc "CTconn_SetParameters" \l 0��Change connection's parameter values��Name:�CTstatus  CTconn_SetParameters (Connection, ParameterList, TranInfo, Mode)��Input:�CTconn_ct�Connection�Handle of Connection whose parameter values are to be changed���CTkvs�ParameterList�Connection parameter key/value set��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction tranInfo struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to change the values of the parameters for the specified connection (Connection).

The parameter names and their new values are specified by means of the key/value set, ParameterList.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Conn_ECTF_SetParameters�Parameters set (completion event)��Event specific keys�Value Type�Description��Conn_ECTF_Error�CTerror�Error codes as listed below��Cautions

None.

Errors

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBUSY	(	Concurrency Rule Violation

CT_errorSYSTEM	(	System Error

CTconn_errorBADCONNECTION	(    Invalid Connection Object

�� AUTONUMLGL �8.�	Container Management�xe "container management" \b��xe "services:container management" \b�

� AUTONUMLGL �8.1.�	Introduction

The S.100 Container Management API provides an operating system independent mechanism for the storage and interchange of system data between system services, resources, and the application.

A Container�xe "container" \b� is an object logically residing in the file system of an S.100 server and containing zero or more Data Objects�xe "data objects"�. Data Objects are made up of the actual data and a set of attributes (which describes the properties of the data).  The API uses containers, rather than simply specifying pathnames in either the client or server operating systems, in order to allow the S.100 server to augment the normal features found in OS file systems with the features required by Resources to manipulate media data in a convenient manner.  For example, a .WAV file stored in a particular file within the server may be manipulated more conveniently by using a Container API that treats it as a container containing a time varying media object (or possibly a collection of such objects) with appropriate coder, data rate, and other parameters defined for it.

Examples of �xe "container:container data types"�data types typically stored in S.100 Containers include but are not limited to:

Encoded audio

Text

FAX

Speech Recognition vocabularies

Container object types and properties are defined by the ECTF stakeholders who are developing servers and resources, and hence require detailed knowledge of data formats; new types are not dynamically created by the application.



� AUTONUMLGL �8.2.�	Function Summary�xe "functions:container functions"�



Function Summary�Description��CTcont_ChangeMode( Handle, Session, AccessMode, TranInfo, Mode)�Change an object’s access rights��CTcont_CloseObject( Handle, Session, TranInfo, Mode)�Close an object��CTcont_Copy(SrcFullName,  TargFullName, Session, TranInfo, Mode) �Copy a Container or Data Object��CTcont_Create( FullName, Session, ParmList,  TranInfo, Mode)�Create a new Container or Data Object��CTcont_Destroy(FullName, Session, TranInfo, Mode )�Destroy a Container  or Data Object��CTcont_GetObjectList( ContainerName, Session, ObjList, TranInfo, Mode)�List the objects in a container��CTcont_GetParameters( FullName, Session,  Keys, TranInfo, Mode)�Get the Parameters of a container or Data Object��CTcont_OpenObject( FullObjectName, Session, AccessMode, Handle, TranInfo, Mode)�Open an object for read or write��CTcont_ReadContents( Handle, Session, Size, Buffer, Position, TranInfo, Mode)�Read the contents of a Data Object��CTcont_Seek(DataStreamHandle, Size, Flags, TranInfo, Mode)�Set the current position of a Data Object Handle.��CTcont_Rename( OldFullName, NewFullName, Session, TranInfo, Mode)�Rename a Container or Data Object��CTcont_SetParameters( FullName, Parameters, Session, TranInfo, Mode)�Set one or more Parameters on a container or Data Object��CTcont_WriteContents( Handle, Session, Size, Buffer, Position, TranInfo, Mode)�Write the contents of a Data Object��

� AUTONUMLGL �8.3.�	Functional Overview�xe "container:overview"�

The Container Management API functions allow the application to:

Create and destroy both Containers and Data Objects. Data Objects may only be created within Containers. Containers may be nested.  It is not permitted to have multiple Containers of the same name on the same server and it is not possible to have Data Objects of the same name in the same Container.

Change and retrieve Container or Data Object attributes. (Data Objects have both standard and technology-related attributes.  A complete set of standard technology-specific Data Object attributes will be defined in each Resource API specifications..)

List all the Data Objects within a Container.

Copy a Container or Data Object

Rename a Container or Data Object

Open and Close a Data Object to allow access to the data stream.

Change the access rights of an object.

Read and write the contents of a Data Object.

�xe "Containers:unique names"��xe "Data Objects:unique names"�Container and Data Object names must be unique at a given level.  For example, within a directory, all Container and Data Object names must be unique.

Once a Container has been created, the application may create Data Objects within it. More often however, Data Objects are created by executing the API functions of a Resource which make use of Containers (e.g., CTrcdr_Record()).

The Container Management API requires that the application specify unambiguous references to fully qualified Data Objects.



� AUTONUMLGL �8.4.�	Object Types�xe "container:object types"�

Container object types are defined by the Resources and Services that use them (after all, the raison d’être of containers is to exchange data between these objects).  Thus, although the Container Manager must provide the facilities to manipulate container objects, details of their use, as well as the specific parameters that are available in a container object type, are documented by the Resource that uses them.

At the present time, there are three container object types defined for S.100:

Files

Time Varying Media (TVM) objects

Spatial Media (SM) objects

We briefly discuss each of these below.

� AUTONUMLGL �8.4.1.�	File Objects�xe "file objects"��xe "container:file objects"�

A file object is simply a file that is stored in a container. It is the default container type if no resource-defined type is specified for a container object.

� AUTONUMLGL �8.4.2.�	Time Varying Media (TVM) Objects�xe "time varying media objects"��xe "container:time varying media objects"��xe "TVM" \t "see time varying media"�

A Time Varying Media (TVM) object is an object that stores data acquired from some external data source , is encoded via some coding algorithm, and which has associated with it a means of describing the amount of data generated (or consumed) per time interval. It is used to store audio and video information, and is defined by the Player and Recorder Resources.

� AUTONUMLGL �8.4.3.�	Spatial Media (SM) Objects�xe "spatial media objects"��xe "container:spatial media objects"��xe "SM" \t "see spatial media objects"�

A Spatial Media (SM) object contains data that represents a two-dimensional image, along with information that describes the geometric arrangement of elements of that image. it is used to represent Fax pages (among other things), and is defined by the Fax Resource.



� AUTONUMLGL �8.5.�	Naming Conventions

�autonumlgl �	Container Names�xe "container:names"�

The S.100 Container Management API defines a textual naming convention for Containers.  The Container must  reside on a call processing Server .  The convention is as follows:

	ContainerName:

where the “:” is a separator.  To refer to a nested Container the convention is as follows:

ContainerName1:ContainerName2:.........ContainerNameN:

�autonumlgl �	Data Object Names (Fully Qualified) �xe "container:fully qualified data object names"�

The S.100 Container Management API defines a fully qualified textual naming convention for Data Objects.  Data Objects are never referred to in isolation.  The convention is as follows:

ContainerName:DataObjectName

This is a Container name and a Container-relative Data Object name concatenated together.  To refer to a DataObject within a nested Container the following convention is used:

ContainerName1:ContainerName2:........ContainerNameN:DataObjectName 

Lists of Data Object names can be formed by concatenating Data Object names together separated by white space.

All name types are limited to 255 characters.  Any alpha-numeric character is valid with the exception of the following characters:

" ' : ; ( ) [ ] { } | <space>

Examples include:

VOICEMAIL:	Server resident container.

�autonumlgl �	Reserved Container Names�xe "reserved container names"��xe "container:reserved container names"�

The following container names are reserved:

CTTEMP:	Temporary Container



�autonumlgl �	Container Description

�autonumlgl �	Temporary Containers�xe "temporary containers"��xe "container:temporary containers"�

A Temporary Container is a special type of container used to hold temporary Data Objects.  A Temporary Container is limited in scope to the session, no other session may access it.  A Temporary Container is defined with the reserved container name of CTTEMP:.

Data Objects created in a Temporary Container are implemented using the fastest algorithms available.  When the session is destroyed these Data Objects are deleted. Data Objects in this type of container may not be exported for backup.

�autonumlgl �	Reference Data Objects�xe "reference rata rbjects"��xe "container:reference data objects"�

There is also a special type of Data Object whose data value is actually a reference to another Data Object. Reads or Writes on the Reference Object access the referenced object.  An object is a Reference Object if it has a DATA_ECTF_Reference key set to point to another object.  A reference may be to an object outside the Reference Objects container.  If the referenced Data Object is deleted, the reference becomes invalid. Operations on such a reference will give unpredictable results.

�autonumlgl �	Accessing Native Client Files�xe "native client files"��xe "container:native client files"�

The application may wish to access existing native client files rather than recording data on the server.  This can be accomplished by setting the DATA_ECTF_FileName parameter.  If set, this parameter specifies the full filename of the native file. Operations on the DataObject, such as play or record, will open a data stream to the client.

The client API writer is responsible for supplying the code to access native files.  It is the client implementation which dictates which types of native file formats are recognized.  The storage strategy to employ for native files is specified by the DATA_ECTF_Strategy parameter.  If the DATA_ECTF_Filename parameter is set, the default value of this parameter is flat file.

�autonumlgl �	�xe "container:backing up"��xe "data objects:backing up"��xe "backing up Data Objects"��xe "backing up Containers"�Backing up Containers and Objects

Complete backup procedures for Containers and Data Objects will be defined in the S.100 Administration specification.  A summary is provided here:

To facilitate backup, container subsystems should be designed so as to allow standard backup practices.  This is necessarily operating system specific.  All Data Objects (except those created in Temporary Containers) must support a DATA_ECTF_Sync administration function, which causes the Data Object to export itself to the native file system.

A log file is created during the export process which contains all the information necessary to backup and restore Data Objects.  This information includes:

The Data Object’s name and all attributes regarding the Data Object

The location of the file or files that comprise the Data Object

To restore all or part of a backed container file system, the system administrator refers to the log file to determine which files correspond to the containers and Data Objects required. Once these files are extracted the administrator issues an import S.100 administration function to recreate the container system.

�autonumlgl �	Definitions

�autonumlgl �	Parameters

The application may examine and/or set the values of several parameters that affect the performance of this object.  The following standard parameters are defined.



Table � SEQ Table \* ARABIC �33�: Container Parameters



Parameter�Data Type�Definition��CONT_ECTF_Created�CTtime�Creation date and time��CONT_ECTF_LastChanged�CTtime�Date and time last changed��CONT_ECTF_LastAccessed�CTtime�Date and time last accessed��CONT_ECTF_FileName�CTstring�If set, object data is contained in specified file��CONT_ECTF_Reference�CTstring�If set, object is a reference to another object��CONT_ECTF_Size�CTuint�Size of message in bytes��CONT_ECTF_Strategy�CTsymbol�Storage strategy to employ���autonumlgl �	Error Codes

The errors listed below are of type CTerror.



Table � SEQ Table \* ARABIC �34�: Container Error Codes



Error Code Name�Description��CT_errorBADSESSION�Invalid session��CTcont_errorBADCONTAINERNAME�Invalid container name��CTcont_errorBADOBJECTNAME�Invalid object name��CTcont_errorBUSY�Request violates concurrency rules��CTcont_errorCONTAINEREXISTS�Container name already exists��CTcont_errorCONTAINERNOTEXIST�Container does not exist��CTcont_errorINVALIDPARAMETER�A parameter specified is invalid��CTcont_errorOBJECTEXISTS�The target object already exists��CTcont_errorOBJECTNOTEXIST�The object does not exist��CTcont_errorCONTAINERFULL�Container has become full��CTcont_errorOBJECTFULL�Object has become full��CTcont_errorLOCKED�Object is locked for write��CTcont_errorINVPOSITION�Position is out of range��CTcont_errorPERMISSION�Permission to execute this request denied���autonumlgl �	Miscellaneous Constant Definitions



Table � SEQ Table \* ARABIC �35�: Container Miscellaneous Constants



Constant Name�Type�Description��CTdata_posSTART�CTuint�Read or write at start of object data stream��CTdata_posEND�CTuint�Write to end of object data stream��CTdata_accessREAD�CTuint�Non exclusive read access��CTdata_accessWRITE�CTuint�Exclusive write access���autonumlgl �	Unsolicited Events

No unsolicited events are defined at this time.

��autonumlgl �	Container Function Definitions



CTcont_ChangeMode�Change an object’s access rights ��Name:�CTstatus  CTcont_ChangeMode(Handle, Session, AccessMode, TranInfo, Mode)��Input:�CTstring�Handle�Handle to the data stream���CTses_ct�Session�Session to Server���CTuint�AccessMode�New access mode��Output:�None����Standard:�TranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description	

This function changes the access rights to a Data Object.

The Handle argument specifies the Data Object data stream whose access rights will change.

The application specifies the new access mode via the AccessMode argument.  This argument may take one of the following values:

CT_accessREAD	This allows non exclusive READ access to the Data Object . Beware that other applications may potentially be reading or even writing to the same Object.

CT_accessWRITE	This allows exclusive WRITE access to the object.

The application specifies the server that the Data Object resides on by specifying the session in the session argument.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_ChangeMode�Change Access mode of container��Event specific keys�Value Type�Description��Message_ECTF_Error�CTerror�Error codes, as listed below.��Errors

CTcont_errorINVALIDHANDLE	( Invalid handle 

CTcont_errorPERMISSION	( Permission to execute this request denied.

CTcont_errorINVALIDACCESSMODE	( Invalid access mode

CT_errorBADSESSION	( Invalid session 



CTcont_CloseObject�Close an object ��Name:�CTstatus  CTcont_CloseObject(DataStreamHandle, TranInfo, Mode)��Input:�CTuint�DataStreamHandle�Handle to the data stream�������Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description	

This function closes a DataObject that was previously opened for reads and writes via the CTcont_OpenObject function.

The DataStreamHandle argument specifies the data stream to be closed. 

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_CloseObject�Close container object (completion event)��Event specific keys�Value Type�Description��Container_ECTF_DataStreamHandle�CTstring�Handle of data stream to be closed��Message_ECTF_Error�CTerror�Error codes as listed below��

Cautions

None.

Errors

CTcont_errorINVALIDHANDLE	(  Invalid handle 

CTcont_errorPERMISSION	(  Permission to execute this request denied.

CT_errorBADSESSION	(  Invalid session 

CTcont_Copy�Copy a Container or Data Object��Name:�CTstatus  CTcont_Copy( SrcFullName, TargFullName, Session, TranInfo, Mode)��Input:�CTstring�SrcFullName�Name of the source Container or Data Object���CTstring�TargFullName�Name of the target Container or Data Object���CTses_ct�Session�Session to Server��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to copy a Data Object or nested Container from one Container to another Container.  The containers must be located on the same server.

This function may be used to copy a Data Object into the same Container provided the target name  is different from the source name.

The application specifies the nested Container name or Data Object name of the source in the SrcFullName  argument.  The target container or object names is specified in the TargFullName argument.  This function causes the target object to be created in the target container.  Therefore, the target container must not already have an object of the same name.

Once the target has been created the data from the source as well as all of its parameters are copied to the target.

The application specifies the server on which the container resides by specifying the session in the session argument.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_Copy�Copy container (completion event)��Event specific keys�Value Type�Description��Message_ECTF_Error�CTerror�Error codes, as listed below��Errors

CTcont_errorCONTAINERNOTEXIST	( Container does not exist

CTcont_errorOBJECTEXISTS	( The target object already exists

CTcont_errorOBJECTNOTEXIST	( The object does not exist

CTcont_errorCONTAINEREXISTS	( The container already exists 

CTcont_errorBADCONTAINERNAME	( Invalid container name.

CTcont_errorBADOBJECTNAME	( Invalid object name

CTcont_errorCONTAINERFULL			(Container has become full

CTcont_errorPERMISSION	( Permission to execute this request  denied.

CT_errorBADSESSION	( Invalid session 



CTcont_Create�	Create a new Container��Name:�CTstatus  CTcont_Create( FullName, Session, ParmList, Timeout, TranInfo )��Input:�CTstring�FullName�Name of the container to create���CTses_ct�Session�Session to Server on which to create the container���CTkvs_ct�ParmList�KVSet of parameters to be set��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

The purpose of this function is to allow the application to create an empty container on a server.  The Server is identified by the session argument.  The application provides a NULL terminated ASCII name for the container in the FullName argument.  The name must be unique on that host. 

The ParmList argument allows parameters to be set on a container at creation time.  If not used this argument must be set to NULL.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_Create�Create Container (completion event)��Event specific keys�Value Type�Description��Message_ECTF_Error�CTerror�Error codes, as listed below��Cautions

The Handle returned by this function is only valid inside the process in which this function was called.



Errors

CTcont_errorCONTAINEREXISTS	( Container name already exists

CTcont_errorBADCONTAINERNAME	( Invalid container name

CT_errorBADSESSION	( Invalid session 

CTcont_Destroy�Destroy a Container or Data Object��Name:�CTstatus  CTcont_Destroy(FullName, Session, TranInfo )��Input:�CTstring�FullName�Name of the Container or Data Object���CTses_ct�Session�Session to Server��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to destroy a Container or Data Object. Destroying a Container causes all of its objects and corresponding data to be lost.

The application specifies the container to destroy by providing an ASCIIZ name in the FullName argument.

Any attempt to destroy a Container or Data Object while in use will result in an error. ‘In use’ is defined as having an operation in progress or (in the case of a Data Object) being opened for read or write access or (in the case of a Container) containing Data Objects or Containers that are in use.  An attempt to destroy a Container that is in use may result in some of the Containers and Data Objects it contains being destroyed even though the attempt will result in error.

The application specifies the server on which the container resides by specifying the session in the session argument.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.

Cautions

After this function is complete, the handle will no longer be a valid reference to this object.  Further, the S.100 API implementation may re-use this handle.  Thus, using this handle after this function has completed will, at best, result in an error;  in some cases it may succeed,but with unexpected, and potentially disasterous, side-effects.





Container_ECTF_Destroy�Destroy  a container or data object (completion event)��Event specific keys�Value Type�Description��Message_ECTF_Error�CTerror�Error codes, as listed below��Errors

CTcont_errorCONTAINERNOTEXIST	( Container does not exist

CTcont_errorOBJECTNOTEXIST	( The object does not exist

CTcont_errorBADCONTAINERNAME	( Invalid container name.

CTcont_errorBADOBJECTNAME	( Invalid object name

CTcont_errorPERMISSION	( Permission to execute this request  denied.

CT_errorBADSESSION	( Invalid session 



CTcont_GetObjectList�List the Objects in a container��Name:�CTstatus  CTcont_GetObjectList( Container, Session, TranInfo, Mode)��Input:�CTstring�Container�Name of the container���CTses_ct�Session�Session to Server��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to list the contents of a container, analogous to a DIR in DOS or an ls in UNIX.  The container name and the server in which the container is found are specified as input arguments.  The list is returned in the completion event, as described below.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_GetObjectList�List the objects in a container (completion event)��Event specific keys�Value Type�Description��Container_ECTF_ObjectList�CTstring[]�Array of Unicode strings, where each entry in the array is the name of an object to obtain��Container_ECTF_NElems�CTuint�Number of object names returned in Container_ECTF_ObjectList��Message_ECTF_Error�CTerror�Error codes, as listed below��Cautions

None.

Errors

CTcont_errorCONTAINERNOTEXIST	( Container does not exist

CTcont_errorBADCONTAINERNAME	( Invalid container name

CT_errorBADSESSION	( Invalid session 



CTcont_GetParameters�Get the parameters of a container or object��Name:�CTstatus  CTcont_GetParameters( FullName, Session, Keys, KeyCount, OutputParameters, TranInfo, Mode)��Input:�CTstring�FullName�Name of the container or Object���CTses_ct�Session�Session to Server���CTsymbol�Keys[]�Array of parameters to get the values of���CTuint�KeyCount�Number of elements in Keys��Output:�CTkvs_ct*�OutputParameters�Pointer to KVSet handle of returned��Standard:�CTtranInfo*�TranEvent�Transaction Event struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to get the current parameters of a container or object.  The application provides a list of parameters of which it wants the value, in the array Keys[].  All parameters are returned if the Keys[] argument is set to CT_symArrayNull.  The input argument KeyCount is the number of elements in keys.  The parameters are returned in the completion event, in a KVPair whose Key is CONT_ECTF_outputParameters and whose value is a KVSet..   In synchronous mode, its return value is a handle of a KVSet containing the required information.

The application may then examine the values of any of the parameters using the standard functions for manipulating KVSs.

The application specifies the server on which the container resides by specifying the session in the Session argument.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_GetParameters�Get the parameters of a container or object (completion event)��Event specific keys�Value Type�Description��Container_ECTF_OutputParameters�KVSet�Container or object parameters that were returned��Message_ECTF_Error�CTerror�Error codes, as listed below��

Cautions

The output argument ParmList is not valid until the transaction event corresponding to the API call arrives.

Errors

CTcont_errorCONTAINERNOTEXIST	( Container does not exist

CTcont_errorBADCONTAINERNAME	( Invalid container name

CTcont_errorBADOBJECTNAME	( Invalid object name

CT_errorBADSESSION	( Invalid session 



CTcont_OpenObject�Open an object for read or write��Name:�CTstatus  CTcont_OpenObject(FullName, Session, AccessMode, Flags, HOpts, DataStreamHandle, TranInfo, Mode)��Input:�CTstring�FullName�Container:object name pair���CTses_ct�Session�Session to Server���CTuint�AccessMode�Access rights required���CTuint�Flags�Open Flags���CTkvs_ct�HOpts�KVSet of Open Options��Output:�CTuint�DataStreamHandle�Handle to the data stream��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description	

This function opens a DataObject to allow reads or writes to the data within that object.  The DataObject to be opened is specified by the FullName argument and the access rights required are specified via the AccessMode argument.  The following access modes are supported:

CT_accessREAD	This allows non exclusive READ access to the Data Object. Beware that other applications may potentially be reading or even writing to the same Object.

CT_accessWRITE	This allows exclusive WRITE access to the object.

CT_accessCOPY	This allows WRITE access to an object while other READ accesses are being made.  This access mode causes a new copy of the Object payload to be created.  When the handle is closed, the new data will replace the old data such that any OPENs with READ access that occurred before this close will continue to see the old data, and any OPENs with READ access occurring after the close will see the new data.

The flags argument allows additional behavior to be specified:

CTcont_CREATE	This allows the Data Object to be created if it does not already exist.

CTcont_EXCL		This flag used in conjunction with CTcont_CREATE will cause the function to fail if the data object already exists.

CTcont_TRUNCATE	This flag used with CT_accessWRITE or CT_accessCOPY will cause the Data Object payload to be cleared before it is written to.

The HOpts argument allows other details about the command to be optionally specified.  The following key-values will be supported.



Key [type]�Value�Description��CONT_ECTF_MediaTypes�CTsymbol[]�List of acceptable media types.��CONT_ECTF_nMediaTypes�CTuint�Number of symbols in the list of media types��CONT_ECTF_inputParameters�CTkvs_ct�KVSet of parameters to set.��CONT_ECTF_outputParameters�CTsymbol[]�List of parameters to get.��CONT_ECTF_nOutputParameters�CTuint�Number of symbols in the list of parameters to get.��CONT_ECTF_PreFetch�CTuint�Number of bytes to prefetch��The handle of the data stream to be read to/written from is returned in the transaction event, in a KVPair whose Key is CONT_ECTF_Handle and whose value is the handle. If the output argument Handle is not NULL, its return value points to the data stream handle.

The application specifies the server on which the container resides by specifying the session in the session argument.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_OpenObject�Open an object (completion event)��Event specific keys�Value Type�Description��Container_ECTF_DataStreamHandle�CTstring�Name of data stream to be opened��Message_ECTF_Error�CTerror�Error codes, as listed below��Cautions

The output argument handle is not valid until the transaction event corresponding to the API call arrives.

Errors

CTcont_errorCONTAINERNOTEXIST	( Container does not exist

CTcont_errorBADCONTAINERNAME	( Invalid container name

CTcont_errorBADACCESSMODE	( Invalid access mode 

CTcont_errorPERMISSION	( Permission to execute this request  denied.

CT_errorBADSESSION	( Invalid session 



CTcont_ReadContents�Read the contents of a Data Object��Name:�CTstatus  CTcont_ReadContents( DataStreamHandle, Size, InputBuffer, Position, TranInfo, Mode)��Input:�CTuint�Handle�Handle to the data stream���CTuint�Size�Amount of data to read��Output:�CTbyte * �InputBuffer�Handle to a bulk data object��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

The application specifies the DataObject data stream to be read via the DataStreamHandle argument.  This argument must have been previously obtained via a call to the CTcont_Open() function

The application specifies the amount of data and the bulk data object to place the data through the size and InputBuffer arguments respectively.  The Position argument specifies the number of bytes into the data stream at which the read will begin.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_ReadContents�Read the contents of a data object (completion event)��Event specific keys�Value Type�Description��Container_ECTF_InputBuffer�CTbyte*�buffer holding input data��Message_ECTF_Error�CTerror�Error codes, as listed below��Cautions

None

Errors

CTcont_errorINVALIDHANDLE	(  The handle is invalid

CTcont_errorPERMISSION	(  Permission to execute this request denied.

CT_errorBADSESSION	(  Invalid session 

CTcont_Seek�Set the current position of a Data Object handle��Name:�CTstatus  CTcont_Seek( DataStreamHandle, Size, Flags, TranInfo, Mode)��Input:�CTuint�Handle�Handle to the data stream���CTuint�Size�Number of bytes to seek.���CTuint�Flags�Seek flags.��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

The application specifies the DataObject data stream to seek over via the DataStreamHandle argument.  This argument must have been previously obtained via a call to the CTcont_OpenObject() function.

The application specifies how far to seek and where to seek from using the Size and Flags arguments.  The flags supported are:

CTcont_BEGIN		The seek will be relative to the beginning of the Data Object payload.

CTcont_CURRENT	The seek will be relative to the current position in the Data Object payload.

CTcont_END		The seek will be relative to the end of the Data Object payload.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_Seek�Set the current position of the data object handle (completion event)��Event specific keys�Value Type�Description��Container_ECTF_SeekSize�CTuint�Number of bytes sought��Message_ECTF_Error�CTerror�Error codes, as listed below��Cautions

None

Errors

CTcont_errorINVALIDHANDLE	(  The handle is invalid

CTcont_errorPERMISSION	(  Permission to execute this request 	    denied.

CT_errorBADSESSION	(  Invalid session 



CTcont_Rename�Rename a Container or Data Object��Name:�CTstatus  CTcont_Rename (OldFullName, NewName, Session, TranInfo, Mode)��Input:�CTstring�OldFullName�Current name of the object���CTstring�NewName�New object name���CTses_ct�Session�Session to Server��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to rename an existing Container or Data Object.

The application specifies the Container name or Data Object name in the OldFullName argument.

The new name is specified in NewName argument.  The specified in the NewName argument must not already exist. Unlike the OldFullName argument, the NewName argument must be a Container-relative Data Object or Container name.

The application specifies the server on which the container resides by specifying the session in the session argument.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_Rename�Rename a Container or Data Object (completion event)��Event specific keys�Value Type�Description��Message_ECTF_Error�CTerror�Error codes, as listed below��Cautions

None

Errors

CTcont_errorCONTAINERNOTEXIST	( Container does not exist

CTcont_errorOBJECTEXISTS	( The target object already exists

CTcont_errorOBJECTNOTEXIST	( The object does not exist

CTcont_errorCONTAINEREXISTS	( The container already exists 

CTcont_errorBADCONTAINERNAME	( Invalid container name.

CTcont_errorBADOBJECTNAME	( Invalid object name

CTcont_errorPERMISSION	( Permission to execute this request  	   denied.

CT_errorBADSESSION	( Invalid session 



CTcont_SetParameters�Set parameter(s) on a container or object��Name:�CTstatus  CTcont_SetParameters( FullName, ParmList, Session, TranInfo, Mode)��Input:�CTstring�FullName�Name of the container or object���CTkvs_ct�ParmList�KVSet of parameters to be set���CTses_ct�Session�Session to Server��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to set certain parameters of a container or object.  The FullName argument indicates whether the parameters will be set on a container or an object.  The parameters to be set are specified in the Parameters KVSet argument.

The application specifies the server on which the container resides by specifying the session in the Session argument.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_SetParameters�Set parameter(s) on a container or object (completion event)��Event specific keys�Value Type�Description��Message_ECTF_Error�CTerror�Error codes, as listed below��Cautions

None.

Errors

CTcont_errorCONTAINERNOTEXIST	( Container does not exist

CTcont_errorINVALIDPARAMETER 	( A parameter specified is invalid

CTcont_errorBADCONTAINERNAME 	( Invalid container name

CTcont_errorBUSY 	( Request violates concurrency rules

CT_errorBADSESSION 	( Invalid session 



CTcont_WriteContents�Write the contents of a Data Object��Name:�CTstatus  CTcont_WriteContents( DataStreamHandle, Size, OutputBuffer, Position, TranInfo, Mode)��Input:�CTuint�DataStreamHandle�Handle to the object data stream��������CTuint�Size�Amount of data to write���CTbyte *�OutputBuffer�Buffer of bulk data���CTkvs_ct�MediaData�KVSet�������Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values���Description

The application specifies the DataObject data stream it wishes to write to via the DataStreamHandle argument.  This must have been returned via a previous call to the CTcont_OpenObject function.  

 The application specifies the amount and location of the data to be written through the Size and OutputBuffer arguments respectively. 

The Position argument specifies the number of bytes into the object data stream at which the write will begin.  If set to CT_posSTART, the write will begin at the start of the object data stream.  If set to CT_posEND the write will begin at the end of the object data stream.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments will not be present.



Container_ECTF_WriteContents�Write the contents of a data object (completion event)��Event specific keys�Value Type�Description��Container_ECTF_BytesWritten�CTuint�Number of bytes actually written��Message_ECTF_Error�CTerror�Error codes, as listed below��

Cautions

None

Errors

CTcont_errorINVALIDHANDLE	(   Invalid data handle

CTcont_errorPERMISSION	(  Permission to execute request 	    denied

CT_errorBADSESSION	(  Invalid session 

�� AUTONUMLGL �9.�	FAX System Services�xe "FAX system services" \b��xe "services:FAX system services" \b�

�autonumlgl �	Introduction

The Facsimile System Services Application Programming Interface is a set of standard programming interfaces for facsimile (FAX) transmission and management technology.  It is vendor and client operating system independent.

FAX Services are used by a Client Application to send and receive facsimile messages, manage the facsimile transmission documents, and manage status information about the state of the facsimile system.

This API is based upon T.611�xe "T.611"�, the ITU software recommendation for integrating communication services into products.  As an implementation, this API shields developers from telecommunications peculiarities while retaining control and monitoring of activity.  All of the functions are related to specific T.611 names, except for certain administrative functions which are specific to the S.100 Fax System Service.



�autonumlgl �	Function Summary�xe "functions:Fax system services functions"�



Function�Description��CTfax_AbortData(Faxsvc , DataID, TranInfo, Mode)�Abort a previously started transfer operation��CTfax_Close(Faxsvc, ParmList, TranInfo, Mode );�Close the Fax System Service��CTfax_GetData(Faxsvc, DataID, TranInfo, Mode)�Transfer data from the FAX Service ��CTfax_GetParameters(Faxsvc, Keys, KeyCount, ParmList, TranInfo, Mode);  �Get parameter values from the Fax System Service��CTfax_GetTDD(Faxsvc, TDD, DataID,  ParmList, TranInfo, Mode);�Get a Response TDD from a FAX ��CTfax_Open(Faxsvc, Session, ParmList, TranInfo, Mode );�Open a Fax System Service��CTfax_PutData(Faxsvc, DataID, TranInfo, Mode)�Transfer data to the FAX Service ��CTfax_PutTDD(Faxsvc, TDDType, TDDSubType, TDD, DataID, ParmList, TranInfo, Mode);�Initiate a  TDD��CTfax_SetAlarm(Faxsvc , Alarms, TranInfo, Mode)�Enable Event Generation��CTfax_SetParameters(Faxsvc, ParmList, TranInfo, Mode);  �Set parameters values for the Fax System Service��

�autonumlgl �	Program Interface Overview�xe "fax system service:overview"�

This section describes the FAX System Services and its C language API available to communicate and exchange data between an Application and a FAX service.  Communication is accomplished via the exchange of messages called Task Data Descriptions�xe "Task Data Descriptions"� (TDDs�xe "TDDs" \t "See Task Data Descriptions"�). Data is exchanged via S.100 system services that are independent from the TDDs.

�autonumlgl �	Task Data Description (TDD) �xe "fax system service:Task Data Description (TDD)"��xe "TDDseeTaskDataDescription "�

A TDD is a message structure passed back and forth between an application and the FAX Service to communicate task requests and responses to those requests.  The TDD is presented as an S.100 standard Key Value Set (KVSet).  The application uses the standard KVSet functions for creating, destroying and manipulating TDDs.   

Since the communication of these tasks follows a client-server model, two kinds of TDDs are actually exchanged:

A TDD Request, generated by the Application (via a PutTDD function call), describing the directive to be accomplished.

A TDD Response, generated by the FAX System Service (communicated to the Application issuing a GetTDD function call to retrieve the Response), describing a previous request.

An application may send many TDD requests without waiting for the corresponding TDD responses.  At least one Request type (PutTDDSend) does not expect any response at all. In addition, the client-server model is honored by separating a TDD and fax data it may reference by using the DataID, which points to a container which holds data associated with a TDD.  The functions GetData and PutData use DataID to uniquely identify data which may be associated with a TDD, and transferred between an application and the Fax Service.

�autonumlgl �	General API Function Descriptions

The functions for communicating and exchanging data between Applications and the FAX Service fall into three classes:

A set of Request and Response Functions generally described as TDDs. 

A set of functions for exchanging data related to TDDs.

A Notification Function, CTfax_SetAlarm(). 

There are several Groups of TDDs as described in the table below: �xe "fax system service:TDD group"�



Table � SEQ Table \* ARABIC �36�: Task Data Descriptor (TDD) Groups



TDD Group�Response?�Description��Send�yes, if needed�Asks the Fax System Service to send one or more documents.��Receive�yes�Asks the Fax System Service to retrieve an incoming file resulting from a received fax.��Trace�yes�Asks the Fax System Service to perform some action on one or a set of Fax System Service record(s) belonging to a specific state.��Submit�yes�Asks the Fax System Service to perform an action such as converting a document to a specific format.��Since the contents of TDDs include a large number of elements, the reader is referred to the 1994 T.611 recommendation for the details on the exact contents of the various TDDs.  The specific sections which contain this information in T.611 are Chapter 7 on the Exchange Method and Chapter 11 on Service:Telefax Group 3.

�autonumlgl �	Sample Sequence�xe "fax system service:sample sequence"�

� INCLUDEPICTURE C:\\USR\\HENDERSA\\SCSAWA\\FAX1B_1.WMF \* MERGEFORMAT ���	

Figure � SEQ Figure \* ARABIC �12�:  Basic Exchange Method

� REF _Ref339368835 \* MERGEFORMAT �Figure 12� shows a sample sequence of an application exchanging data with the FAX Service.  The figure demonstrates the use of TDD and Events.

�autonumlgl �	State Transition Diagrams

� INCLUDEPICTURE C:\\USR\\HENDERSA\\SCSAWA\\FAXRECVE.WMF \* MERGEFORMAT ���

Figure � SEQ Figure \* ARABIC �13�:  State transitions of the FAX Service during reception

� REF _Ref339368908 \* MERGEFORMAT �Figure 13� presents the state transitions for the FAX Service during reception.  Both actions controlled by the application and actions within the FAX Service are shown.  

� INCLUDEPICTURE C:\\USR\\HENDERSA\\SCSAWA\\FAXTRANS.WMF \* MERGEFORMAT ���

Figure � SEQ Figure \* ARABIC �14�:  State transitions of the FAX Service during transmission

� REF _Ref339368971 \* MERGEFORMAT �Figure 14� shows a comparable view of the state transitions of a FAX Service during transmissions.

�autonumlgl �	S.100 Fax System Service Management�xe "fax system service:management"�

This API defines the functions which are used to permit an application to gain access to an S.100 Fax System Service.  This is accomplished via the S.100 session mechanism using the CTfax_Open function.  The S.100 Resource Manager and System services are also available to the FAX Service.  This allows the FAX Service to control containers and data sources for fax reception and transmission.  Batch processing is available for applications.

T.611 alarms are enumerated as S.100 events and are processed consistently with the S.100 event handler.

Synchronous and non-synchronous modes of operation are specified.

�autonumlgl �	S.100 FAX System Service API and T.611 Application�xe "fax system service:T.611 application"�

Much of the functionality of the S.100 FAX System Service API is based upon the ITU-T T.611 recommendation as updated in June, 1994.  T.611 is a general Programmable Communications Interface which supports various telematic services including Group 3 facsimile, Group 4 facsimile, electronic mail, telex and teletex.  However, only those aspects of T.611 which are of a general nature or which specifically pertain to Group 3 facsimile services have been adapted for use within the S.100 FAX System Service API.  Therefore, the S.100 FAX System Service API can be considered to be a subset or profile of T.611.  

Since T.611 is a rather large specification, we have included specific references throughout this document.  This should enable readers to more easily find reference material within T.611 that addresses the details of important information such as the contents of the Task Data Descriptors (TDDs).  Readers who need to gain a full understanding of the S.100 Fax System Service API in detail should have a copy of the 1994 version of T.611 document available for reference.  The purpose of the following  section will be to explain some of the differences in terminology, principles and functions between the S.100 FAX System Service API and T.611.

�xe "fax system service:T.611 comparison"�Differences in Terminology and Naming Conventions

Many of the T.611 functions have been adapted for use within the S.100 FAX System Service API.  However, these functions have been renamed in accordance with S.100 naming conventions.  For example, the EGetData function within T.611 has been renamed as the CTfax_GetData function within the S.100 FAX System Service API.  A full list of the functions which are supported within the S.100 FAX System Service API functions and the corresponding equivalent within T.611 are contained in section 8 of this specification.  

There are also differences in terminology which is used.  T.611 is defined as a program interface between a Local Application (LA) and a Communications Application (CA).     Examples of Local Applications include end user programs such as word processing, spreadsheets and databases.  Communication Applications are defined to be specialized applications which provide support for standardized telecommunications services such as Group 3 facsimile.   

A cross reference between these T.611 terms and the equivalent terms which are used in defining the S.100 FAX System Service API is provided below:  



Table � SEQ Table \* ARABIC �37�: T.611/S.100 Fax System Service Equivalent Terms



T.611 Term� FAX System Service API Term��Local Application (LA)�Application��Communications Application (CA)�FAX System Service��Alarms�Event��Differences in Functions

Since the S.100 environment provides a rich set of features in areas such as event handling and resource management, the S.100 FAX System Service API relies upon the S.100 implementation of such features.  In some instances, the S.100 functions serve as a replacement for equivalent administrative functions which would be used in a conventional T.611 implementation.   Due to these administrative differences, the following T.611 functions have not been adapted for use in the  FAX System Service API:   ELogin, ELogout and EPollTDD. Instead, an application may use the following S.100 Fax System Service functions to carry out administrative activities:  Open, Close, Get_Parameters, and Set_Parameters.    In addition, the Fax API function CTfax_GetTDD essentially combines the functionality of the T.611 PollTDD and GetTDD functions.   

There are also differences between the target applications and environments of the FAX System Service API and T.611.  As a result, the following additional T.611 variations of the PutTDD functions have not been adapted for use in the S.100 FAX System Service API:  Submit:Print and Trace:Dispatch.   

Event handling is  managed using S.100 functions rather than using the exact event or alarm mechanism specified in T.611.  Instead, the application will be able to enable events using the CTfax_SetAlarm function.  The details of this approach are provided in the description of the CTfax_SetAlarm function.



�autonumlgl �	Type and Constant Definitions

�autonumlgl �	Parameter Names, Ranges and Values

The parameters defined below can be used to describe the capabilities of a particular Fax System Service.  These parameters may be examined by the application, but cannot be changed.  

These parameters are a subset of those defined for use in the CA-Descriptor as defined in T.611.  A summary of possible parameters is presented in the table below.  For more details on the meanings of the parameters, see sections 9.5 and 11.4 of T.611. Please note that since these parameters are technically aligned with 1994 T.611, the data type used for parameters which have been defined in T.611 as strings have been assigned the data type “char *” in the Fax System Service, since the 1994 version of T.611 does not support Unicode.

Naming Convention:

	Fax_ECTF__<parameter name>

Table � SEQ table \* MERGEFORMAT �38�:  General T.611 Parameters

Name�Data Type/Range�Definition/Value��Codepages�char *�Specifies additional code pages for extended ASCII character sets (see T.50) used in TDDs (e.g. “850” from T.50)��Coding�char *�TDD Encoding (only key/values supported - see Table 6.3 of T.611)��Country�CTuint�Specifies country for which Fax Service is configured:  Use values from ITU-T T.35��FC�char *�T.611 Functional Class (“A” or “B”)

“A” - Supports SendTDD, SendAckTDD and ReceiveTDD plus options

“B” - Supports “A” plus complete “Trace” functionality��Font0�char *�Digit (“1”-”9”) for number of fonts supported��Fontx�char *�Format (“Fontname” ”,” ”Pitch”)

“x” value from 1 to 9

(e.g. “Courier,12”)��National�char *�All keywords which are specific to and defined by a National Administration��Private�char *�Private keywords��Submit�char *�Values supported in SUBMIT function (“CONVERT” | ”CHECK”)��Table � seq table �39�:  Exchange Method Parameters:

Name�Data Type/Range�Definition/Value��EM�char *�Exchange Method:  “file” | “primitive”��Alarm �CTbool�Boolean on whether the Fax Service supports the SetAlarm function��Table � seq table �40�:  Service Parameters:

Name�Data Type/Range�Definition/Value��Addconv�char *�Lists additional transfer formats supported by the Fax Service��Addkeys�char *�Lists all the additional keywords supported by the Fax System Service (only keywords classified as “+” in the TDD tables of T.611 section 6 are specified here.)  ��Table � seq table �41�:  Fax Specific Parameters:

Name�Data Type/Range�Definition/Value��FX3�char *�Services supported:  STD, BTM, DTM, BFT, EDI��Extend�char *�Extended Services supported: Poll���autonumlgl �	Error Codes



Table � SEQ Table \* ARABIC �42�: Fax System Service Error Codes



Error Code Name�Type�Description��CT_errorBADPARM�CTerror�Invalid Parameter in Function Call��CT_errorBUSY�CTerror�FAX Service Request Queue Full��CT_errorSYSTEM�CTerror�System Error��CTfax_errorBADCONTAINER�CTerror�Bad or corrupted container object��CTfax_errorBADTDD�CTerror�Invalid TDD��CTfax_errorOUTOFDATA�CTerror�Not enough data to fulfill FAX request���autonumlgl �	Concurrence Rules

The  FAX System Service places no restrictions on concurrent FAX requests.  The actual number of concurrent requests is limited only by the size of the FAX System Service's request queue.

�autonumlgl �	Function Messages

Messages are defined within the context of TDDs.

�autonumlgl �	Unsolicited  Events



Fax_ECTF_Alarm�A T.611 Alarm has occurred ��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�T.611 Alarm is being notified��Fax_ECTF_Alarm�CTsymbol�Symbol for the alarm;  see table below of Alarm values��Fax_ECTF_Data�CTkvs_ct�other KVPairs which are alarm specific��Table � seq table �43�:  Alarm Values

Value�Description��Fax_ECTF_AlarmAsyncResponses�Asynchronous response occurred related to a Fax function ��Fax_ECTF_AlarmQueueFull�A TDD Queue is full��Fax_ECTF_AlarmDocumentReceived�A document has been received��Fax_ECTF_AlarmConnectionLost�The connection was lost in a fax operation��Fax_ECTF_AlarmSendSuccess�A document was sent successfully ��Fax_ECTF_AlarmSendEvent�An event happened during execution of a fax send operation ��Fax_ECTF_AlarmSendFailed�A Fax Send failed��Fax_ECTF_AlarmCorruptedTDD�Corruption of a TDD has occurred��Fax_ECTF_AlarmFaxResourceFailed�An underlying fax resource failed ��Fax_ECTF_AlarmAlarmsUnavailable�Alarms are not available��Fax_ECTF_WillStop�The Fax Service will no longer process requests.  Close immediately.  ��Fax_ECTF_TDDRespAvailable�A TDD response is available.  The application should get a TDD from the Fax Service.  ��Fax_ECTF_AlarmReceiveEvent�An event occurred associated with a Fax Receive operation����autonumlgl �	FAX Function Definitions



�CTfax_AbortData�Aborts a previously started transfer operation��Name:�CTstatus CTfax_AbortData(Faxsvc, DataID, TranInfo, Mode)��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTstring�DataID�Identifier of the data container��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function aborts a transfer operation (initiated via a previous CTfax_PutData() or CTfax_GetData() call associated with the data ID specified in the DataID argument).  The equivalent T.611 function is EAbortData.  

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately and TranInfo returns only the status of the asynchronous call.



Fax_ECTF_AbortData�AbortData Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Completion event for AbortData��Cautions

None.

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADDATAID	(	Bad Data ID

CTfax_errorBADFAXSVC	(	A bad Fax System Service handle was supplied

CTfax_errorCOMMS	(	Communications lost before completion of function



�CTfax_Close�Closes the Fax System Service��Name:�CTfax_Close(Faxsvc, ParmList, TranInfo, Mode );��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTkvs_ct�ParmList�Parameters��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function closes a Fax System Service that was previously available to applications to perform fax operations.  There is no equivalent T.611 function, although there are similarities to Elogout.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (as applicable)  contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately and TranInfo returns only the status of the asynchronous call.



Fax_ECTF_Close�Close Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Close has completed��Cautions

None.

Errors

CT_errorBUSY	(	Server unable to service request

CTerrorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADFAXSVC	(	A bad Fax System Service handle was supplied

CTfax_errorCOMMS	(	Communications lost before completion of function



�CTfax_GetData�Transfer data from the FAX Service��Name:�CTstatus CTfax_GetData(Faxsvc , DataID, Length, Buffer, TranInfo, Mode)��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTstring�DataID�Pointer to a data container��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function causes the data identified by the DataID argument to be transferred to the FAX Service. 

The equivalent T.611 function is EGetData.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Fax_ECTF_GetData�GetData Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Get data event has completed.  The DataID and other information are returned.��Fax_ECTF_DataID�CTstring�ID of the data associated with a TDD��Fax_ECTF_InputBuffer�CTbyte[]�Bulk data object handle��Cautions

None.

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADDATAID	(	Bad Data ID

CTfax_errorBADFAXSVC	(	A bad Fax System Service handle was supplied

CTfax_errorCOMMS	(	Communications lost before completion of function



CTfax_GetParameters�Get the Parameter values for the Fax Service��Name:�CTstatus CTfax_GetParameters (Faxsvc, Keys, KeyCount, ParmList, TranInfo, Mode);  ��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTsymbol�Keys[]�List of parameters whose values are to be returned��Output:�CTkvs_ct *�ParmList�Parameter KV set returned���CTuint *�KeyCount�Number of keys in the ParmList��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function enables an application to get the current values of specified parameters for the Fax System Service (Faxsvc).  

The application provides a list of parameters for which it wants values in the array Keys[].  All parameters are returned if the Keys[] argument is set to CT_NULL. If a list of parameters is specified, KeyCount should contain the number of elements in the list.  The parameters are returned in the form of a KVSet.  The application may examine the values of any of the parameters using the standard functions for manipulating KVSs.  The application is responsible for destroying the returned ParmList when it no longer requires it.)

There is no equivalent T.611 function.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Fax_ECTF_GetParameters�GetParameters Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Get Parameters function is complete��Fax_ECTF_DataID�CTint�ID of the data associated with a TDD��Cautions

None

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADFAXSVC	(	A bad Fax System Service handle was supplied

CTfax_errorCOMMS	(	Communications lost before completion of function

CTfax_errorBADPARM	(	Invalid parameter in parameter list



CTfax_GetTDD�Get a Response TDD from the FAX Service��Name:�CTstatus CTfax_GetTDD(Faxsvc, TDD, DataID, ParmList, TranInfo, Mode);��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTkvs_ct�ParmList�Parameters���DataID�CTstring� Pointer to a data container associated with the TDD��Output:�CTkvs_ct *�TDD�TDD (KVSet)��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function retrieves a TDD response from the FAX Service.  The function returns the TDD information in the form of a Key Value Set[x].  The function creates the KVSet and returns it at the address specified in the TDD argument.  The application may examine the contents of the TDD using the standard KVSet functions.

Along with the TDD data itself, the optional Data ID is returned as the value of the key Fax_ECTF_DataID.  The Data-ID may be used to retrieve any accompanying data using the GetData function.

The application may determine that a TDD is available simply by calling this function.  Alternatively the application may enable the Fax_ECTF_TDDRespAvailable event to be automatically notified of the presence of a Response TDD .

It is the responsibility of the application to destroy the TDD using the CTkvs_Destroy() when it is no longer needed.

The equivalent T.611 function is EGetTDD.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Fax_ECTF_GetTDD�GetTDD Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Completion Event for GetTDD��Cautions

None.  

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADFAXSVC	(	A bad Fax System Service handle was supplied

CTfax_errorCOMMS	(	Communications lost before completion of function

CTfax_errorNOTDDS	(	No TDDs on this device



�CTfax_Open�Opens the Fax System Service��Name:�CTstatus CTfax_Open (Session, Faxsvc, ParmList, TranInfo, Mode );��Input:�CTses_ct�Session�Handle of Session to be associated with the Fax System Service ���CTkvs_ct�ParmList�Parameters requested  for Fax System Service (KVSet)��Output:�CTfax_ct *�Faxsvc�Handle of newly accessed Fax System Service��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function opens a Fax System Service from within an S.100 session.  A handle is returned which is used by the application when accessing the other Fax System Service API functions.  A particular set of parameters for the Fax System Service may be requested via the ParmList; if the ParmList values are not supported for the available Fax System Service(s), the Open will fail and a Fax System Service will not be reserved. 

There is no equivalent T.611 function, although there are similarities to ELogin.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Fax_ECTF_Open�Open Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Fax Open function has completed��Cautions

None.

Errors

CT_errorBADSESSION	(	Invalid Session Object

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADPARM	(	Invalid parameter in parameter list



CTfax_PutData�Transfer data to the FAX Service��Name:�CTstatus CTfax_PutData(Faxsvc, DataID, Length, Buffer, TranInfo, Mode)��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTstring�DataID�Pointer to a data container��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function copies the data pointed to by the DataID argument to the FAX Service.   The pointer toward the container for the data would have been previously established in a PutTDD function.  

The equivalent T.611 function is EPutData.  

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately and TranInfo returns only the status of the asynchronous call.



Fax_ECTF_PutData�PutData Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Completion Event for PutData.  ��Cautions

None.

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADDATAID	(	Bad Data ID

CTfax_errorBADFAXSVC	(	A bad Fax System Service handle was supplied

CTfax_errorCOMMS	(	Communications lost before completion of function



CTfax_PutTDD�Send a  TDD��Name:�CTstatus CTax_PutTDD(Faxsvc, TDDType, TDDSubType, TDD, DataID, ParmList, TranInfo, Mode);��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTstring�TDDType�Type of TDD���CTstring�TDDSubType�subtype of TDD���CTkvs_ct�TDD�TDD (KVSet)���CTkvs_ct�ParmList�Parameters��Output:�CTstring *�DataID�Pointer to the a container of data associated with the TDD.  ��Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to initiate TDD.  The TDD to use is specified in the TDDType and TDDSubType arguments.    This function will fill out all TDD fields specific to this operation. In some cases, a DataID is returned, which points to a container of data associated with the TDD.  The PutData function is used to transfer this data to the Fax Service.  For more information on this function, refer to the T.611 specification.

A summary of TDD Types and Subtypes follows:



Table � seq table �44�:  Task Data Descriptor (TDD) Types and Subtypes



TDD Type�SubType�Definition��Send�N/A�Send one or more documents to one or more recipients��SendAck�N/A�Same as send, except that a completion report shall be generated at the end of the SendAck request processing (Status parameter will show results).��Receive �N/A�Requests retrieval of an incoming document already received by the Fax System Service.  ��Trace�Cancel�Used to cancel a previous Send request�� �Copy�Used to get a copy of Fax Service records which are in a certain state���Delete�Used to delete Fax Service records in a delayed state���Purge�Used to purge Fax Service records ���Reschedule�Used to reschedule a failed send request���Preview�Used to permit Fax Service administrator or application to retrieve and dispatch received documents; a copy of the document is retained within the Fax Service ��Submit�Check�Check the transfer format of a document for validity���Convert�Convert a document from one format to another��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately and TranInfo returns only the status of the asynchronous call.



Fax_ECTF_PutTDD�PutTDD Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�PutTDD function has completed.  ��Cautions

None.

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADFAXSVC	(	A bad Fax System Service handle was supplied

CTfax_errorBADKVS	(	Bad KVSet

CTfax_errorBADTDD	(	Invalid TDD elements

CTfax_errorCOMMS	(	Communications lost before completion of function

CTfax_errorINVTDD	(	Invalid TDD(not supported by Fax System Service)



CTfax_SetAlarm�Enables Alarm Event Generation��Name:�CTstatus CTfax_SetAlarm(Faxsvc, Alarms, TranInfo, Mode)��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTkvs_ct�Alarms�Alarm enable set (KVSet)���CTkvs_ct�ParmList�Parameters��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to enable the generation of Alarm events from the FAX Service.  The application specifies the events it wishes to enable through a KVSet passed in the Alarms argument.  The application specifies that it wishes to enable an alarm event by setting the value of the appropriate key to non-zero.  Any alarm keys not present in the KVSet will be assumed to be disabled.

When an alarm is generated it will be reported via the Fax_ECTF_Alarm EventID.  The qualifier of the event will be the key used to enable the event.

The possible  alarm event keys are defined in a table in the Unsolicited Events section.  

The equivalent T.611 function is ESetAlarm.

Refer to section 7.2.7 of the T.611 specification for more information on these alarms. 

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately and TranInfo returns only the status of the asynchronous call.



Fax_ECTF_SetAlarms�SetAlarms Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Set Alarms function has completed. ��Fax_ECTF_AlarmsEnabled�CTkvs_ct�Specifies the types of alarms enabled��Cautions

None.

Errors

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function.

CTfax_errorBADFAXSVC	(	A bad Fax System Service handle was supplied

CTfax_errorBADKVSET	(	The given Key Value Set was invalid.

CTfax_errorCOMMS	(	Communications lost before completion of function



CTfax_SetParameters�Set the Parameter values for the Fax Service��Name:�CTstatus CTfax_SetParameters (Faxsvc, ParmList, TranInfo, Mode);  ��Input:�CTfax_ct�Faxsvc�Handle of Fax System Service���CTkvs_ct�ParmList�Parameter KV set��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function enables an application to set the current values of specified parameters for the Fax System Service (Faxsvc).  The parameter names and their new values are specified by means of the key/value set, ParmList.  

There are restrictions on the use of this function.  In particular, many permanent attributes of a specific Fax System Service may not be changed except by the manufacturer or system administrator.  

There is no equivalent T.611 function.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately and TranInfo returns only the status of the asynchronous call.



Fax_ECTF_SetParameters�SetParameters Completion Event��Event specific keys�Value Type�Description��Fax_ECTF_EventID�CTsymbol�Completion Event for SetParameters.   ��Cautions

None

Errors

CT_errorBUSY				      (  Server unable to service request.

CT_errorSYSTEM	(  System error occurred during the 	    execution of this function.

CTfax_errorBADFAXSVC	(  A bad Fax System Service handle was supplied

CTfax_errorCOMMS	( Communications lost before 	  	    completion of function

CTfax_errorBADPARM	(  Invalid parameter in parameter list

�� AUTONUMLGL �10.�	FAX Resource�xe "Fax resource"��xe "resource:Fax resource"�

� AUTONUMLGL �10.1.�	Introduction

The Facsimile Resource Application Programming Interface is a set of standard programming interfaces for facsimile (FAX) transmission, reception and procedure management technology.  It is vendor and client operating system independent.  

The Fax Resource API is one of two methods by  which application program developers may choose to implement fax capabilities within S.100. The FAX System Service API is described in chapter 9 of this document.  It defines functions which enable applications  to send and receive fax documents in a batch mode while isolating the application from many of the details of facsimile procedures.  The Fax Resource API offers the developer more direct control of fax operations by enabling applications to manage fax procedures and exercise run-time control over Fax Resources.   

For each function within the Fax Resource API, all input and output arguments as well as return codes are specified.  This document also describes each function's behavior, concurrency rules, errors and events.   



� AUTONUMLGL �10.2.�	Function Summary�xe "fax resource:fax resource functions"�



Function Summary�Description��CTfaxhl_Receive(Group, SM, RTC, ParmList, TranInfo, Mode)�This function receives  facsimile data and stores them in the specified SM Object using a Fax Receiver resource.   ��CTfaxhl_Send(Group, SMlist, RTC, ParmList, TranInfo, Mode)�tc "FunctionName" \l 0��This function transmits facsimile data from a Spatial Media (SM) using a Fax Sender resource. ��CTfaxhl_Stop(Group, ParmList, TranInfo, Mode)	�This function can be used to stop a high level fax procedure.  ��CTfaxll_BeginNegotiate(Group,  ParmList, TranInfo, Mode)�Initiate Fax Negotiations based on a set of procedure parameters.  ��CTfaxll_End(Group,  ParmList, TranInfo, Mode)�This function ends a Low Level fax procedure.   ��CTfaxll_ForceNegotiate(Group,  ParmList, TranInfo, Mode)�Force Fax Negotiations based on a revised set of procedure page parameters.  ��CTfaxll_Init(Group,  ParmList, TranInfo, Mode)�This function initializes a Low Level fax resource. ��CTfaxll_ReceivePages(Group, SM, ParmList, TranInfo, Mode)�This function receives one or more facsimile pages and stores it in the specified SM.    ��CTfaxll_SendPage(Group, SM, ParmList, TranInfo, Mode)�This function transmits a single page of facsimile data from a Spatial Media (SM).��CTfaxll_Stop(Group, ParmList, TranInfo, Mode)	�This function can be used to stop a low level fax procedure.  ��

� AUTONUMLGL �10.3.�	Program Interface Overview�xe "fax resource:overview"�

This section describes FAX resources and the C language API available to perform facsimile operations using these resources.  The FAX resource allows the user to perform any of the facsimile capabilities supported by that individual FAX resource.  FAX resources may vary in capabilities in areas which may include support for optional Group 3 facsimile protocol elements and support for various fax objects.

� AUTONUMLGL �10.3.1.�	 Containers and Spatial Media�xe "spatial media"��xe "fax resource:spatial media"�

S.100 defines the Container �xe "container"�object class for providing portable, operating system-independent storage of data.  Instances of Containers are objects that hold collections of data.    The functions in the Fax Resource API act on data objects stored in containers.  The objects used in fax functions are spatial in nature and this object class shall be referred to as Spatial Media (SM).   

Spatial Media shall include both data and associated attributes.  The data portion of Spatial Media may be structured information such as �xe "TIFF file"�TIFF files or less structured information such as ASCII.  For example, in a TIFF file, the attributes and the data are encapsulated within the TIFF file structure.    Attributes may also be set for an SM by using the �xe "functions:CTcont_SetParameterValues()"�CTcont_SetParameterValues() function to set the parameters which apply to a specific object or a container.  

� AUTONUMLGL �10.3.2.�	High and Low Level FAX Functions�xe "fax resource:high and low level functions"�

The FAX class defines methods for taking a Spatial Media object or Spatial Media object list and performing various Group 3 facsimile operations using FAX Resource functions.  The FAX Resource API includes both High Level and Low Level functions.   There are three classes of Fax Resources: Fax Sender, Fax Receiver and Low Level Fax.  

High Level functions are designed to carry out all of the activities of a fax procedure using a Fax Sender or Fax Receiver resource via a single Send fax or Receive fax function.  High Level functions can act on a single SM object or on an SM object list.  For high level functions, parameters are defined which shall apply for the duration of the procedure.  This means that the same procedure parameters shall apply to all members of an SM object list.  The high level functions can also be used to place a Fax Resource in a Ready state; from this state, the Fax Sender or Fax Receiver resource can be accessed by other S.100 resources via the S.100 run time control commands.   

Low Level FAX Resource functions are provided to enable an application to perform functions which require more detailed control of procedure parameters or SM objects than is available in High Level functions.  A sequence of multiple Low Level functions is required to execute a single send or receive fax procedure.  Low level functions are used to act on  a single SM object to send or receive a fax page.  For low level send operations, offset parameters may be specified to permit sending of a specified range of data.  

Separate Low Level functions are also available to carry out other components of a fax procedure including initialization, negotiations and termination.  Depending upon the capabilities of the Low Level Fax Resource, it may also be possible to perform more complex fax operations during a fax procedure such as polling of remote files or sending and receiving files during the same procedure.   When it is necessary to carry out multiple fax operations during a single fax procedure, use of Low Level functions is required.  Low level functions do not provide access points for S.100 run time control, since multiple functions must be executed to conduct each fax procedure.  

For S.100 purposes, a fax procedure is defined as a single fax phone call from the point of call setup to call termination.  For an individual fax procedure, the application must use either High Level functions or Low Level functions.  However, an application may switch between use of high level and low level functions in consecutive fax procedures. by including both High Level and Low Level fax resources in an S.100 Group.   

� AUTONUMLGL �10.3.3.�	Hierarchy of Parameters �xe "fax resource:parameter hierarchy"�

Due to the nature of fax, there are several levels at which parameters may be set in the context of S.100.



Group Parameters�These are set at the time that an S.100 Group is created and are set globally.��Procedure Parameters�These are variables such as transfer speed or Subaddress which apply for the duration of an individual fax procedure.  These may also be revised during a fax procedure if permitted within the scope of an Fax Resource function.��Page Parameters�These are variables which apply for a specific page.  These may be set using a page oriented function or may result from the characteristics of the fax object.  ��� AUTONUMLGL �10.3.4.�	Interaction With Other Resources�xe "fax resource:interaction with other resources"�

Within the S.100 environment, almost all aspects of a fax procedure may be conducted using only the Fax Resource functions.  However, there will typically be some interaction with other S.100 resources in areas such as dialing and phone disconnection and an application may choose to use other S.100 resources in the call setup portion of the fax procedure for events such as fax calling tone detection and fax connection.  

Interaction can also take place via run time control.  The High Level FaxSend and FaxReceive functions can be set up so that the fax procedure parameters have been initialized and the Fax Resource is placed into a Ready state.  From this state, an run time control Start command may be issued by another S.100 resource, which will place the Fax Resource into an active state and the fax procedure will then proceed.  Further details about the states and behaviors of the Fax Resources are contained in the following section.  



� AUTONUMLGL �10.4.�	Resource Behavioral Overview

� AUTONUMLGL �10.4.1.�	Fax Sender

�

Figure � SEQ Figure \* ARABIC �15�:  Fax Sender state diagram

A Fax Sender resource has three states: �xe "fax resource:states"�



IDLE�In an idle state, a Fax Sender is doing nothing. ��READY�In a Ready state, a Fax Sender has been initiated with all necessary procedure parameters and is fully equipped to accept a Start command and carry out a fax procedure.  This state can be entered by setting the Startmode procedure parameter.��SEND�In a Send state, the Fax Sender is actively sending an SM object or object list.  ��A Group_ ECTF_Stop command or CTfaxhl_Stop command may also be applied once the Fax Sender is active; the result of either command will be to terminate the current fax procedure.    

� AUTONUMLGL �10.4.2.�	High Level Fax Receiver

�

Figure � SEQ Figure \* ARABIC �16�:  Fax Receiver state diagram

A Fax Receiver resource has three states: �xe "fax resource:states"�



IDLE�In an idle state, a Fax Receiver is doing nothing. ��READY�In a Ready state, a Fax Receiver has been initiated with all necessary procedure parameters and is ready to accept a Start command to execute a receive fax procedure.  This state can be entered by setting the Startmode procedure parameter.��RECEIVE�In a Receive state, the Fax Receiver is actively receiving an SM object.  ��A Group_ECTF_Stop command or CTfaxhl_Stop command may also be applied once the Fax Receiver is active; the result of either command will be to terminate the current fax procedure.  	

� AUTONUMLGL �10.4.3.�	Low Level Fax Operations

 �

Figure � SEQ Figure \* ARABIC �17�:  Low Level Fax state diagram

A Low Level Fax Resource has the following states: �xe "fax resource:states"�



IDLE�In an idle state, a Low Level Fax Resource is doing nothing. ��READY�In a Ready state, a Low Level Fax Resource  has been initiated with all necessary procedure parameters and is ready to accept a Begin_Negotiations command and begin fax negotiations.  ��NEGOTIATION�In a Negotiation state, a Low Level Fax Resource is carrying out fax negotiations (Phase B).  ��SEND�In a Send state, the Low Level Fax Resource  is actively sending an SM object or object list.  ��RECEIVE�In a Receive state, the Low Level Fax Resource is actively receiving an SM object.  ��DOCUMENT COMPLETE�In a Document Complete state, the Low Level Fax Resource has completed a document and there may be other documents to be processed.  If no documents remain, the next stage is to return to the Idle state via the End function.    ��� AUTONUMLGL �10.5.�	Runtime Control�xe "fax resource:runtime control"��xe "runtime control"�

S.100 Runtime Control is available for interaction with Fax Resources (Fax Senders and Fax Receivers) which are under the control of High Level Fax Resource functions.  S.100 Runtime Control is not applicable for Fax Resources which are under the control of Low Level fax functions.   

� AUTONUMLGL �10.5.1.�	Recognized Actions

Fax Sender

The Actions that may be received by a Fax Sender object are listed below.  



Table � seq table �45�:  Fax Sender Runtime Control Actions



Control Key�Definition�Event Generated��FaxSender_ECTF_Start�Start the current operation on a Fax Sender object�FaxSender_ECTF_Start��FaxSender_ECTF_Stop�Stop the current operation on a Fax Sender object�FaxSender_ECTF_Send��Fax Receiver

The Actions that may be received by a Fax Receiver object are listed below.  



Table � seq table �46�:  Fax Receiver Runtime Control Actions



Control Key�Definition�Event Generated��START�Start the current operation on a Fax Receiver object�FaxReceiver_ECTF_Start��STOP�Stop the current operation on a Fax Receiver object�FaxReceiver_ECTF_Receive��� AUTONUMLGL �10.5.2.�	Recognized Conditions

Fax Sender Conditions

The following conditions are recognized by this object and may be used to trigger runtime controls (i.e., send a control message to another object).



Table � seq table �47�:  Fax Sender Runtime Control Conditions



Condition Key�Definition��FaxSender_ECTF_Send�Fax Send has completed.��Fax Receiver Conditions

The following conditions are recognized by this object and may be used to trigger runtime controls (i.e., send a control message to another object).

 

Table � seq table �48�:  Fax Receiver Runtime Control Conditions



Control Key�Definition��FaxReceiver_ECTF_Receive�Fax Receive has completed.��

� AUTONUMLGL �10.6.�	Concurrency Rules�xe "concurrency:fax resource concurrency rules"��xe "fax resource concurrency rules"�

It is not permissible to run high level fax functions at the same time as low level fax functions within the same fax procedure.  It is also not permissible to call �xe "functions:CTfaxhlSend()"�CTfaxhlSend() and �xe "functions:CTfaxhl_Receive()"�CTfaxhl_Receive() on the same SM object simultaneously.  However, it is possible to call low level functions as per the concurrence rules below in order to maintain continuity during fax procedures.  An 'X' in a cell indicates that the row function may be called while the column function is executing; i.e. �xe "functions:CTfaxll_SendPage()"�CTfaxll_SendPage() may be called while �xe "functions:CTfaxll_BeginNegotiate()"�CTfaxll_BeginNegotiate() is executing.



Table � seq table �49�:  Fax Resource Concurrency Rules



Function / While executing�CTfaxll_ SendPage�CTfaxll_ReceivePage�CTfaxll_ForceNegotiate�CTfaxll_ Stop��CTfaxll_SendPage�-�-�X�X��CTfaxll_ReceivePage�-�-�X�X��CTfaxll_BeginNegotiate�X�X�-�X��CTfaxll_ForceNegotiate�X�X�-�X��

� AUTONUMLGL �10.7.�	Type and Constant Definitions

� AUTONUMLGL �10.7.1.�	Parameter Names, Ranges and Values

The application may determine if a particular parameter of a resource is supported and the range of the parameters supported.  The names and ranges of parameters are determined by calling the �xe "functions:CTgrp_GetParameterNames()"�CTgrp_GetParameterNames( ) and �xe "functions:CTgrp_GetParameterRanges()"�CTgrp_GetParameterRanges( ) functions using the parameters in the Group parameter tables listed below.  Parameters pertaining to fax may be applicable to one of three levels: Group, Procedure and Page.    Group level parameters are set using the S.100 functions as described below.  Procedure level and page level parameters are set via the ParmList of individual functions.  

Fax Sender 

The following parameters apply to Fax Senders.  The naming convention for the keys to retrieve the names and ranges of parameters and to set and retrieve parameter values is:

	FaxSender_ECTF_<name>

To retrieve the parameters of a Fax Sender, use the �xe "functions:CTgrp_GetParameterNames()"�CTgrp_GetParameterNames( ) function with the FaxSender_ECTF_<name>

 key and replace name with one of the names in the Name column.  The returned Boolean value will indicate whether the resource has this parameter name.  

To retrieve the range of parameters supported by  a Fax Sender, use the �xe "functions:CTgrp_GetParameterRanges()"�CTgrp_GetParameterRanges( ) function with the FaxSender_ECTF_<name>

> key and replace name with one of the names in the Name column.  The data returned will be of the type indicated in the Data Type Parameter Ranges column.  The specifics of each parameter are described in the Definition column.  

To set and retrieve the parameter values of a Fax Sender, use the �xe "functions:CTgrp_SetParameters()"�CTgrp_SetParameters( ) and �xe "functions:CTgrp_Getparameters()"�CTgrp_GetParameters( ) functions with the FaxSender_ECTF_<name>

 key and replace name with one of the names in the Name column.  The data returned will be of the type indicated in the Data Type Parameter column.  The specifics of each parameter is described in the Definition column.  The State column indicates which states the Fax Sender can be in when issuing a �xe "functions:CTgrp_SetParameters()"�CTgrp_SetParameters( ) function.    Please note that the parameters for an individual fax procedure using a Fax Sender object are set using the ParmList associated with the CTfaxhl_Send function.   A list of procedure parameters which may be set is shown later in this section.    The ParmList used for an individual fax procedure may override the defaults established at the Group level; however, the ParmList cannot be used to set capabilities which are not supported by the individual Fax Sender resource. Please note that there are two character data types used for Fax Resource parameters: “CTstring”, which supports Unicode wide characters is used by default, but “char *” is used where needed to retain technically aligned with the Group 3 Fax T.30 standard for fields such as Password, Subaddress, Selective Polling and identifiers that are defined using 8 bit characters in the standard.

Fax Headers and Footers �xe "fax resource:headers and footers"�

Headers and Footers for fax pages are optional features which may be supported by a fax resource.  

The parameters Pageheader and Pagefooter may be interrogated for a resource to determine whether the capability is supported.  If these features are supported, the additional parameters Headeroptions and Footeroptions are available to indicate the specific options supported by a resource and to permit the application to set the options which should apply for a specific fax procedure.  The options may generally be set either as resource parameters or procedure parameters.  

The options which may be supported for headers and footers and the meaning of these options is defined below:

Overlay �Overlay of fax header or footer on image data is supported��Replace�Replacement of image data by the fax header or footer is supported��Insert�Inserting Fax header before image data or Fax footer after image data is supported��Params      �Replaceable parameters are supported in header or footer field��RemoteID �%r parameter is supported in header or footer field��AutoGen�Fax header or footer is automatically generated by the fax resource ��Some of the options are mutually exclusive.  For example, if the Overlay, Replace and Insert options are all available for a Header, the application must choose which one shall apply.    If AutoGen is available and requested by the application, the other options shall not apply.   

In some cases, the fax resource will support the capability for an application to prepare a customizable Header or Footer field, using the parameters Headerfield and Footerfield, respectively.  These fields may be customized by setting values for replaceable parameters within the Fax Header or Footer.  

Replaceable parameters in the fax header string are denoted by an escape char   "%" percent character (ASCII 0x25) followed by a format code from the following table.  Invalid codes,  or codes not supported by the fax resource are stripped from the header string.  The format code %% is used to insert a single % in the header string.   The values of the "%" formatting codes have been chosen to provide general conformity with the conventions used by the POSIX strftime function.   Alphanumeric strings to be displayed, where appropriate, shall provide support for Unicode wide characters, except in cases where these strings are explicitly defined in recommendation T.30 using 8 bit characters (e.g. for the CSI Called Station ID (Remote ID below) and the TSI Transmit Station ID (Local ID below)). The data type of strings represented using Unicode shall beCTstring *. A table of the replaceable parameter codes follows:  



Table � seq table �50�:  Fax Resource Replaceable Parameter Codes



Replaceable Parameter Codes�Length�Name�Format��%d�2�date�01-31��%m�2�month�01-12��%y�2�year	�00-99��%Y�4�year	�0000-9999��%I�2�12 hour�01-12��%H�2�24 hour�00-23��%M�2�minute�00-59��%p    	�2�AM/PM	�AM or PM��%P	�2�page number�01-99��%l�20�Local ID (ID from sending fax)�0-9, + or SPACES��%r  		

�20�Remote ID   (ID of receiving fax)�0-9, + or SPACES��%%  			�1�percent�display % in header�� Please note that some of the formatting codes are case sensitive as specified above. 

  

Table � SEQ Table \* ARABIC �51�:  FAX Sender Group Parameters

Name�Data Type Parameter Ranges�Data Type Parameters�State When Settable�Definition��BFT�CTbool�CTbool�Ready�Specify BFT support��ECM�CTbool�CTbool�Idle�Specify ECM support��Faxevent�CTbool�CTbool�Idle, Ready�Set Fax Event Reporting��Faxid�char *�char *�Idle, Ready�Facsimile Identifier (20 characters)��Faxobjects�CTstring [ ]�CTstring�Idle�Fax Objects supported directly by the Resource; Valid Fax Objects are specified in � REF _Ref339877546 \* MERGEFORMAT �Table 59�.��Faxoperation�CTstring [ ]�CTstring�Idle, Ready�Fax Operations Supported; Valid values are Send and Send_Polling��Encodetranslate�CTstring [ ]�CTstring�Idle�Line Encoding Translations supported��Footerfield�CTstring�CTstring�Idle�Contents of Page Footer��Footerlength 

�CTint�CTuint�Idle�Number of characters that can be placed on the page footer��Footeroptions�CTstring [ ]�CTstring�Idle�Footer Options Supported (see list of options); default is insert��Headerfield�CTstring�CTstring�Idle�Contents of Page Header��Headerlength 

�CTint�CTuint�Idle�Number of characters that can be placed on the page header��Headeroptions�CTstring [ ]�CTstring�Idle�Header Options Supported (see list of options); default is insert��Lengthpadding�CTstring [ ]�CTstring�Idle�Page Length Padding Options��Lengthscaling�CTstring [ ]�CTstring�Idle�Page Length Scaling Options��Lengthtruncate�CTstring [ ]�CTstring�Idle�Page Length Truncation Options��Lineencoding�CTstring [ ]�CTstring�Idle�Image line encodings supported; Valid values are MH, MR, MMR��Modulation�CTstring [ ]�CTstring�Idle�Modem Modulations Supported��Pagefooter�CTbool�CTbool�Idle�Specify Page Footer Support��Pageheader�CTbool�CTbool�Idle�Specify Page Header Support��Pagewidth�CTstring [ ]�CTstring�Idle�Width of Page in characters��Password�char *�char *�Idle, Ready�Password of Destination; 20 characters (0-9,*,#)��Resolution�CTstring [ ]�CTstring�Idle�Image resolutions supported��Scantime�CTuint32�CTuint32�Idle�Scan line time ��Startmode�CTbool�CTbool�Idle�Specify that Fax Sender goes into Ready Mode 

(0 - normal)��Subaddress�char *�char *�Ready�Subaddress of Destination; 20 characters (0-9,*,#)��Widthscaling�CTstring [ ]�CTstring�Idle  �Page Width Scaling Options��Widthtruncate�CTstring [ ]�CTstring�Idle�Page Width Truncation Options��Table � SEQ Table \* ARABIC �52�:  FAX Sender Procedure Parameters

 Name�Data Type Parameter Ranges�Data Type Parameters�State When Settable�Definition��BFT�CTbool�CTbool�Ready�Request BFT��Faxevent�CTbool�CTbool�Idle, Ready�Set Fax Event Reporting��Faxoperation�CTstring �CTstring �Ready�Request Send or Send_Polling�� Firstpagenum �CTuint�CTuint�Idle, Ready�First Page Number for Fax Header or Footer��Footerfield�CTstring�CTstring�Idle�Contents of Page Footer��Footerlength 

�CTint�CTuint�Idle�Number of characters that can be placed on the page footer��Footeroptions�CTstring [ ]�CTstring�Idle�Footer Options Supported (see list of options); default is insert��Headerfield�CTstring�CTstring�Idle�Contents of Page Header��Headerlength 

�CTint�CTuint�Idle�Number of characters that can be placed on the page header��Headeroptions�CTstring [ ]�CTstring�Idle�Header Options Supported (see list of options); default is insert��Pagefooter�CTbool�CTbool�Idle�Specify Page Footer Support��Pageheader�CTbool�CTbool�Idle�Specify Page Header Support��Pagewidth�CTstring [ ]�CTstring�Idle�Width of Page in characters��Password�CTstring�CTstring�Idle, Ready�Password of Destination; 20 characters (0-9,*,#)��Resolution�CTstring [ ]�CTstring�Idle�Image resolutions supported��Scantime�CTuint32�CTuint32�Idle�Scan line time ��Sendpoll�CTbool�CTbool�Idle, Ready�Specifies support for Send Polling feature��Startmode�CTbool�CTbool�Idle�Specify that Fax Sender goes into Ready Mode 

(0 - normal)��Subaddress�CTstring�CTstring�Ready�Subaddress of Destination; 20 characters (0-9,*,#)��Transferspeed�CTuint32�CTuint32�Ready�Requested Fax Transfer Speed��Fax Receiver 

The following parameter names apply to Fax Receivers.  The naming convention for the keys to retrieve the parameter names and ranges, and to set and retrieve parameter values is:

	FaxReceiver_ECTF_<name>

To retrieve the parameters supported by a Fax Receiver, use the �xe "functions:CTgrp_GetParameterNames()"�CTgrp_GetParameterNames( ) function with the FaxReceiver_ECTF_<name> key and replace name with one of the names in the Name column.  The returned Boolean value will indicate whether the resource has this parameter name.

To retrieve the parameter ranges for a Fax Receiver, use the �xe "functions:CTgrp_GetParameterRanges()"�CTgrp_GetParameterRanges( ) function with the FaxReceiver_ECTF_<name> key and replace name with one of the names in the Name column.  The data returned will be of the type indicated in the Data Type Parameter Ranges column.  The specifics of each parameter are described in the Definition column.  

To set and retrieve the parameters of a Fax Receiver, use the CTgrp_SetParameters() and CTgrp_GetParameters( ) functions with the FaxReceiver_ECTF_<name>> key and replace name with one of the names in the Name column.  The data returned will be of the type indicated in the Data Type Parameters column.  The specifics of each parameter is described in the Definition column.  The State column indicates which states the Fax Receiver can be in when issuing a CTgrp_SetParameters() function.    Please note that the parameters for an individual fax procedure using a Fax Receiver object are set using the ParmList associated with the CTfaxhl_Receive function.   A list of procedure parameters which may be set is shown in � REF _Ref339877406 \* MERGEFORMAT �Table 54�.  The ParmList used for an individual fax procedure override the defaults established at the Group level; however, the ParmList cannot be used to set capabilities which are not supported by the individual Fax Receiver resource.  

Table � SEQ Table \* ARABIC �53�:  FAX Receiver Group Parameters

Name�Data Type Parameter Ranges�Data Type Parameters

�State When Settable�Definition��BFT�CTbool�CTbool�Ready�Specify BFT support��ECM�CTbool�CTbool�Idle�Specify ECM support��Faxevent�CTbool�CTbool�Idle, Ready�Set Fax Event Reporting��Faxid�char *�char *�Idle, Ready�Facsimile Identifier (20 characters)��Faxobjects�CTstring [ ]�CTstring�Idle�Fax Objects supported directly by the Resource; Valid Fax Objects are specified in � REF _Ref339877546 \* MERGEFORMAT �Table 59�.��Faxoperation�CTstring [ ]�CTstring�Idle, Ready�Fax Operations Supported; Valid values are Receive and Receive Polling��Encodetranslate�CTstring [ ]�CTstring�Idle�Line Encoding Translations supported��Lengthpadding�CTstring [ ]�CTstring�Idle�Page Length Padding Options��Lengthscaling�CTstring [ ]�CTstring�Idle�Page Length Scaling Options��Lengthtruncate�CTstring [ ]�CTstring�Idle�Page Length Truncation Options��Lineencoding�CTstring [ ]�CTstring�Idle�Image line encodings supported; Valid values are MH, MR, MMR��Modulation�CTstring [ ]�CTstring�Idle�Modem Modulations Supported��Pagewidth�CTstring [ ]�CTstring�Idle�Width of Page in characters��Password�char *�char *�Idle, Ready�Receive Password ; 20 characters (0-9,*,#)��Resolution�CTstring [ ]�CTstring�Idle�Image resolutions supported��Scantime�CTuint32�CTuint32�Idle�Scan line time ��Selpollkey�char *�char *�Ready�Key for Selective Polling; 20 characters (0-9,*,#)��Startmode�CTbool�CTbool�Idle�Specify that Fax Receiver goes into Ready Mode 

(0 - normal)��Widthscaling�CTstring [ ]�CTstring�Idle  �Page Width Scaling Options��Widthtruncate�CTstring [ ]�CTstring�Idle�Page Width Truncation Options��Table � SEQ Table \* ARABIC �54�:  FAX Receiver Procedure Parameters

 Name�Data Type Parameter Ranges�Data Type Parameter�State When Settable�Definition��BFT�CTbool�CTbool�Ready�Enable BFT��Faxevent�CTbool�CTbool�Idle, Ready�Set Fax Event Reporting��Faxoperation�CTstring [ ]�CTstring �Ready�Request Receive or Receive_Polling��Pagewidth�CTstring [ ]�CTstring�Idle�Width of Page in characters��Password�char *�char *�Idle, Ready�Receive Password ; 20 characters (0-9,*,#)��Resolution�CTstring [ ]�CTstring�Idle�Image resolutions supported��Scantime�CTuint32�CTuint32�Idle�Scan line time ��Selpollkey�char *�char *�Ready�Key for Selective Polling; 20 characters��Startmode�CTbool�CTbool�Idle�Specify that Fax Receiver goes into Ready Mode 

(0 - normal)��Low Level Fax Resource �xe "fax resource:low level fax resource"�

The following parameters apply to Low Level Fax Resources.  The naming convention for the keys to retrieve the parameter names and ranges, and to set and retrieve parameter values is:

	Faxll_ECTF_<name>

To retrieve the parameters supported by a Low Level Fax Resource, use the �xe "functions:CTgrp_GetparameterNames()"�CTgrp_GetParameterNames( ) function with the Faxll_ECTF_<name> key and replace name with one of the names in the Name column.  The returned Boolean value will indicate whether the resource supports this parameter name.  

To retrieve the parameter ranges of a Low Level Fax Resource, use the �xe "functions:CTgrp_GetParameterRanges()"�CTgrp_GetParameterRanges( ) function with the Faxll_ECTF_<name>  and replace name with one of the names in the Name column.  The data returned will be of the type indicated in the Data Type Parameter Ranges column.  The specifics of each parameter are described in the Definition column.  

To set and retrieve the parameters of a Low Level Fax Resource, use the CTgrp_SetParameters( ) and CTgrp_GetParameters( ) functions with the Faxll_ECTF_<name> key and replace name with one of the names in the Name column.  The data returned will be of the type indicated in the Data Type Parameters column.  The specifics of each parameter is described in the Definition column.  The State column indicates which states the Low Level Fax Resource can be in when issuing a CTgrp_SetParameters( ) function.    

The parameters for an individual fax procedure using a Low Level Fax Resource object are set using the ParmList associated with the �xe "functions:CTfaxll_Init()"�CTfaxll_Init() function.   A list of procedure parameters which may be set is shown later in this section.  The ParmList used for an individual fax procedure overrides the defaults established at the Group level; however, the ParmList cannot be used to set parameters which are not supported by the individual Low Level Fax resource.  

Fax Headers and Footers �xe "fax resource:fax headers and footers"�

Headers and Footers for fax pages are optional features which may be supported by a low level fax resource.  Please see the description of Fax Headers and Footers under the Fax Sender section of this chapter for details on how to use the applicable parameters.    The parameters may be set at either the Group or Procedure level for Send fax, Send Polling and Turnaround Polling operations.  

Table � SEQ Table \* ARABIC �55�:  Low Level FAX Resource Group Parameters

Name�Data Type Parameter Ranges�Data Type Parameters�State When Settable�Definition��BFT�CTbool�CTbool�Ready�Specify BFT support��ECM�CTbool�CTbool�Idle�Specify ECM support��Encode-translate�CTstring [ ]�CTstring�Idle�Line Encoding Translations supported��Faxevent�CTbool�CTbool�Idle, Ready�Set Fax Event Reporting��Faxid�char *�char *�Idle, Ready�Facsimile Identifier (20 characters)��Faxobjects�CTstring [ ]�CTstring�Idle�Fax Objects supported directly by the Resource; Valid Fax Objects are specified in Table 8.��Faxoperation�CTstring [ ]�CTstring�Idle, Ready�Fax Operations Supported; Valid values are Send,  Send_Polling, Receive, Receive_Polling, Turnaround��Footerfield�CTstring�CTstring�Idle�Contents of Page Footer��Footerlength 

�CTint�CTuint�Idle�Number of characters that can be placed on the page footer��Footeroptions�CTstring [ ]�CTstring�Idle�Footer Options Supported (see list of options); default is insert��Headerfield�CTstring�CTstring�Idle�Contents of Page Header��Headerlength 

�CTint�CTuint�Idle�Number of characters that can be placed on the page header��Headeroptions�CTstring [ ]�CTstring�Idle�Header Options Supported (see list of options); default is insert��Lengthpadding�CTstring [ ]�CTstring�Idle�Page Length Padding Options��Lengthscaling�CTstring [ ]�CTstring�Idle�Page Length Scaling Options��Lengthtruncate�CTstring [ ]�CTstring�Idle�Page Length Truncation Options��Lineencoding�CTstring [ ]�CTstring�Idle�Image line encodings supported; Valid values are MH, MR, MMR��Modulation�CTstring [ ]�CTstring�Idle�Modem Modulations Supported��Pagefooter�CTbool�CTbool�Idle�Specify Page Footer Support��Pageheader�CTbool�CTbool�Idle�Specify Page Header Support��Pagewidth�CTstring [ ]�CTstring�Idle�Width of Page in characters��Password�char *�char *�Idle, Ready�Password of Destination; 20 characters (0-9,*,#)��Resolution�CTstring [ ]�CTstring�Idle�Image resolutions supported��Selpollkey�char *�char *�Ready�Key for Selective Polling; 20 characters (0-9,*,#)��Scantime�CTuint32�CTuint32�Idle�Scan line time ��Subaddress�char *�char *�Ready�Subaddress of Destination; 20 characters (0-9,*,#)��Widthscaling�CTstring [ ]�CTstring�Idle  �Page Width Scaling Options��Widthtruncate�CTstring [ ]�CTstring�Idle�Page Width Truncation Options��Table � SEQ Table \* ARABIC �56�:  Low Level FAX Procedure Parameters

 Name�Data Type Parameter Ranges�Data Type Parameters�State When Settable�Definition��BFT�CTbool�Tbool�Ready, Negotiate�Request BFT��Faxevent�CTbool�CTbool�Idle, Ready�Set Fax Event Reporting��Faxoperation�CTstring[ ]�CTstring�Ready, Negotiate�Request Send,  Send_Polling, Receive, Receive_Polling, Turnaround��Firstpagenum �CTuint�CTuint�Idle, Ready�First Page Number for Fax Header or Footer��Pagewidth�CTstring [ ]�CTstring�Idle, Negotiate�Width of Page in characters��Password�char *�char *�Idle, Ready, Negotiate�Password of Destination; 20 characters (0-9,*,#)��Resolution�CTstring [ ]�CTstring�Idle�Image resolutions supported��Scantime�CTuint32�CTuint32�Idle�Scan line time ��Selpollkey�char *�char *�Ready, Negotiate�Key for Selective Polling; 20 characters (0-9,*,#)��Subaddress�char *�char *�Ready, Negotiate�Subaddress of Destination; 20 characters (0-9,*,#)��Transferspeed�CTuint32�CTuint32�Ready, Negotiate�Requested Fax Transfer Speed��� AUTONUMLGL �10.7.2.�	Page Parameters

Page parameters apply only for a single page.  These are only applicable for use with the Low Level fax functions such as SendPage.  These are identical to procedure parameters, but only apply for use with page oriented functions.  Attributes of each individual fax page may also be specified as attributes of Spatial Media.   

Table � SEQ Table \* ARABIC �57�:  Low Level FAX Page Parameters

 Name�Data Type Parameter Ranges�Data Type Parameters�State When Settable�Definition��Firstpagenum �CTuint�CTuint�Idle, Ready�First Page Number for Fax Header or Footer��Pageoffset�CTuint�CTuint�Ready, Send, Negotiate�Specify page offset within the SM object for send function��Endofpage�CTstring[ ]�CTstring�Ready, Send,  Negotiate�Specify action at end of page; (Continue, Renegotiate, End_of_Document)��� AUTONUMLGL �10.7.3.�	Error Code Definitions



Table � seq table �58�:  Fax Resource Error Codes



Error Code Name�Type�Description��CT_errorBADGROUP�CTerror�Invalid Group Object��CT_errorBADPARM�CTerror�Invalid Parameter in Function Call��CT_errorBADRESOURCE�CTerror�Function Not Supported by this Group��CT_errorBADRTC�CTerror�Invalid Runtime Control Object��CT_errorBUSY�CTerror�Resource is Already Busy��CT_errorSYSTEM�CTerror�System Error��CTfaxhl_errorBADSM�CTerror�Bad or corrupted Spatial Media Object��CTfaxhl_errorCOMMS�CTerror�Communications lost before completion of function��CTfaxhl_errorOUTOFDATA�CTerror�Not enough data to fulfill FAX request��CTfaxll_errorBADSM�CTerror�Bad or corrupted Spatial Media Object��CTfaxll_errorCOMMS�CTerror�Communications lost before completion of function��CTfaxll_errorOUTOFDATA�CTerror�Not enough data to fulfill FAX request��� AUTONUMLGL �10.7.4.�	Spatial Media Object Definitions�xe "spatial media" \b��xe "fax resource:spatial media" \b�

The objects which may be acted upon by High Level or Low Level fax functions are known as Spatial Media (SM).  SMs are specific types of data objects stored in containers.  These SMs by definition have both data content and attributes.  The currently supported list of data types for Spatial Media which may be supported for use with the  Fax Resource API is shown below in � REF _Ref339877546 \* MERGEFORMAT �Table 59�.  

Table � SEQ Table \* ARABIC �59�:  Supported Spatial Media



Spatial Media�Page Attributes�Status�Data Type Identifier��Tiff F�Embedded�Mandatory�TIFF��ASCII T.50 �Settable�Optional �ASCII_T50��ASCII 447�Settable�Optional �ASCII_447��DCX/PCX�Embedded�Optional�DCX��Hybrid Concatenated�Settable�Optional �CONCAT��Hybrid Indirect�Settable�Optional �INDIRECT��SM Properties

SMs include the data and attributes that are sent and received by the Fax Sender, Fax Receiver and low level Fax Resources.  These resources require that SMs have the following property specified:. 



Table � seq table �60�:  Fax Resource Spatial Media Properties



Property Name�Type�Description��Faxdatatype�CTstring�File Format Used for Fax Data��The permissible values for the Faxdatatype are shown in � REF _Ref339877546 \* MERGEFORMAT �Table 59� above.  The default Faxdatatype for receiving FAXes is TIFF.  The default �xe "TIFF file"�TIFF tags which apply for reading (sending) and writing (receiving) are described in the sections below entitled TIFF Reader and TIFF Writer.  

Spatial Media which include ASCII data content shall have a set of accompanying properties.  The properties which may be described are included in the table below.     The following properties are used only for Spatial Media objects which include ASCII data content.



Table � seq table �61�:  Fax Resource Spatial Media Properties (with ASCII data content)



Property Name�Type�Description��Asciibytes�CTuint�Number of Bytes of ASCII Data Object��Asciicpi�CTuint�Characters per inch for an ASCII page (10 12 or 17 permitted) ��Asciilinespace�CTuint�Line Spacing for ASCII fax page��Asciimargins�CTuint [ ]�Margins for ASCII Fax Page (Top Bottom, Left, Right in multiples of .1 inches��Asciipadflag�CTbool�Sets Padding to full fax page ��By definition, Spatial Media which include ASCII data content may only be acted upon by the CTfaxhl_Send and CTfaxll_SendPage functions.  The CTcont_SetParameterValues function shall be used to set the properties for the specific SM object or for the entire Container.  

Description of TIFF Conventions Used for Spatial Media�xe "TIFF file"�

The TIFF requirements below are broken into two sections, specifying the requirements for all TIFF reader implementations (Used for sending FAXes) and TIFF writer implementations (Used to receive a fax) that will be supported for use with this API.

TIFF Reader�xe "TIFF file:TIFF reader"�

All implementations must be able to read (send) TIFF files meeting the requirements below.  Image data must not have any coding errors.  Implementations may also read any other formats as long as available formats can be disclosed to applications at run time.

ByteOrder: 	MM,II	(Either byte order is allowed)

These tags shown below must be readable. If not present, reader must use default shown:



Table � seq table �62�:  TIFF Reader Tags



TAG�Legal Values�Default�Comment��BitsPerSample	�1�1�one bit per sample��CleanFaxData		�0�0�data has no errors	��Compression�3�3�T.4 bi-level encoding, MH��FillOrder�2,1�2�LSB first or MSB first��ImageWidth�1728	�1728���ImageLength�> 0��required��NewSubFileType	�2�2�single page of multipage file��Orientation�1	�1�1st row=top left, 1st col=top��PageNumber	�X/X	�0/1	�pg/tot, 0 base, tot in 1st IFD��PhotometricInterp�0�0�0 is white��ResolutionUnit	�2	�2�inches��RowsPerStrip�=ImageLength�=ImageLength���SamplesPerPixel�1�1�one sample per pixel��StripByteCounts	�>0��required��StripOffsets�>0��required��T4Options�4�4�MH, byte aligned EOL��XResolution�204,200	�204���YResolution�196,98,100,200�196���If the reader supports G4 compression, all the above are the same except:



Table � seq table �63�:  TIFF Reader Tags with G4 Compression



TAG�Legal Values�Default�Comment��Compression�4�3�CCITT T.6 encoding, MMR��T6Options�0�0���Other tags may be present, but must be of the sort that can be ignored safely by implementations (i.e. purely informational).

Tiff Writer�xe "TIFF file:TIFF writer"�

For fax writing (receiving), implementations are required to use the following TIFF format as a default. Image data must not have any coding errors. Implementations may write other formats as long as applications have selected from among those formats at run time.



Table � seq table �64�:  TIFF Writer Tags



TAG�Legal Values�Comment��ByteOrder:�II���BitsPerSample	�1�one bit per sample��Compression�3�T.4 bi-level encoding, MH��FillOrder�2�LSB first��ImageWidth�1728	���ImageLength�> 0���NewSubFileType	�2�single page of multi-page file��PageNumber	�X/X	�pg/tot, 0 base, tot in 1st IFD��PhotometricInterp�0�0 is white��ResolutionUnit	�2	�inches��RowsPerStrip�>0�must be same as ImageLength��SamplesPerPixel�1�one sample per pixel��StripByteCounts	�>0�as appropriate��StripOffsets�>0�as appropriate��T4Options�4�MH, byte aligned EOL��XResolution�204, 200���YResolution�196,98, 100, 200���Tags that are optional, but if present must contain the values as shown:



Table � seq table �65�:  Optional TIFF Writer Tags



TAG�Legal Values�Comment��CleanFaxData�0�data doesn't contain bad scan lines��Orientation�1�1st row = top left, 1st col = top��Recommended informational tags are:

Software, Datetime, BadFaxLines, ConsecutiveBadFaxLines

If the writer supports G4 compression, all the above are the same except:



Table � seq table �66�:  TIFF Writer Tags with G4 Compression



TAG�Legal Values�Comment��Compression�4�CCITT T.6 encoding, MMR��T4Options:��should not be written��T6Options�0���Other tags may be present, but must be of the sort that can be ignored safely by applications (i.e. purely for information).

Differences Between SM TIFF and T.611 TIFF�xe "TIFF file:differences between SM TIF and T.611 TIFF"�

The T.611 TIFF format has definitions for one reader and 4 types of writers. It requires support for 300 dpi, uncompressed data, EOLs aligned or unaligned, and both fill orders.  The ImageWidth divided XResolution must be less than or equal to 215mm.  The 4 writer classes correspond to 4 different compressions - 1 (uncompressed), 2 (uncompressed word aligned), 3 (G3 MH), and 4 (G4 MMR). 

All writers must be able to write the class 1 format. Class 1 and 2 writers must use MSB fill order and 300 dpi. Class 3 writers must use LSB fill order, fax resolutions, EOL byte alignment, and MR is not allowed. Class 4 writers must use LSB fill order, fax resolutions, and no EOL byte alignment.

The default SM fax writer is fully compatible with the class 3 writer, but the default SM reader is not fully compatible.  This implies that implementations of S.100 Fax Services which want to be able to use any S.100 Fax Resource will have to be able to reformat files for sending.

Concatenated and Indirect Spatial Media�xe "spatial media:concatenated and indirect"��xe "container:concatenated and indirect spatial media"�

A concatenated SM includes Spatial Media of more than one type concatenated together.  This may take the form of an SMlist or may utilize the S.100 Container facility.   Indirect Spatial Media may be constructed using the S.100 Container facility where the Spatial Media has a data value which is actually a reference to another Data Object.  See the chapter on Container Management for details on these approaches.  

Unsolicited Events�xe "event:fax resource unsolicited events"�

Fax resource event processing takes place in accordance with the high level and low level Fax Resource  models already presented.  There are two categories of related events:  Completion Events and Unsolicited (Fax) Events.

Event processing is handled in a similar manner for both levels of fax resources.  Specifically, each event includes  an EventID  and an Event Qualifier that answers  the question “why” an event occurred. Depending upon the type of event and its context, there may also be Event Keys returned with the event object which provide more detail associated with the event.

A diagram is presented below showing the hierarchy of possible events and their characteristics.  As a given application model move towards the top level of event processing (i.e., High Level Completion events), the data available is:

More persistent in nature

More generalized in terms of content

Less dependent on system/server responsiveness

	�EMBED MSDraw���

Figure � SEQ Figure \* ARABIC �18�: Hierarchy of FAX Resource Events

However, as an application uses lower level fax functions, events and event keys will show the following characteristics:					

Event key values will be more transient; the application needs to act on events quickly. 

The event keys will provide more detailed information.

Event processing is more reliant upon system/server responsiveness.

Event keys may be provided as additional information accompanying the event if this information is available to the high or low level resource.  Since it is possible to provide event reporting at various levels of detail, the list of documented events and event keys will be shown below for each type of fax resource.

� AUTONUMLGL �10.7.5.�	Fax Sender Events

The following events may be received during the course of a Fax Send if the Faxevent parameter is set to 1.



FaxSender_ECTF_PageEnd�Fax Sender Page End Event��Event specific keys�Value Type�Description��FaxSender_ECTF_EventID�CTsymbol�Fax Page End Event has occurred��FaxSender_ECTF_Qualifier�CTuint�Reason why the event happened; One of the values in table in next section��FaxSender_ECTF_Data�CTkvs_ct�Additional data accompanying the event; One of the values in table in next section��FaxSender_ECTF_Error�CTerror�One of error codes defined for high level fax operations��

FaxSender_ECTF_NegNotify�Fax Negotiations Event��Event specific keys�Value Type�Description��FaxSender_ECTF_EventID�CTsymbol�Fax Negotiations Notification��FaxSender_ECTF_Qualifier�CTuint�Reason why the event happened ; One of the values in table in next section��FaxSender_ECTF_Data�CTkvs_ct�Additional data accompanying the event; One of the keys in the table in next section��FaxSender_ECTF_Error�CTerror�One of error codes defined for high level fax operations��� AUTONUMLGL �10.7.6.�	Fax Sender Event Qualifier Values

The following cause codes are returned as keys in the tranEvent object.  The following table lists the values a Fax Sender resource can return in the Qualifier standard event key.  



Qualifier�Type�Description��FaxSender_ECTF_Local�CTuint�The Local Fax Resource initiated the event��FaxSender_ECTF_Remote�CTuint�The Remote Fax Device initiated the event.  ��� AUTONUMLGL �10.7.7.�	Fax Sender Event Data Keys

The Fax Sender should add several keys to the standard event object when the information is available.

The following event data keys may be added to a PageEnd event:  



Table � seq table �67�:  Fax Sender Event Data Keys



Data Keys�Type�Description��Pagestransferred�CTuint�Number of fax pages transferred��SMpagenum�CTuint�Page of SM which was transferred��Headerpagenum�CTuint�Latest Page Number on Fax Header��The following event data keys may be added to a NegNotify event:

Table � seq table �68�:  Fax Sender Event Data Keys (NegNotify event)



Data Keys�Type�Description��Remoteid�char *�Remote fax device’s id��SEP�char *�Selective Polling Field��Password�char *�Password for Polling��� AUTONUMLGL �10.7.8.�	Fax Receiver Events

The following events may be received during the course of a Fax Receive, if the Faxevent parameter is set to 1.

 

FaxReceiver_ECTF_PageEnd�Fax Receiver Page End Event��Event specific keys�Value Type�Description��FaxReceiver_ECTF_EventID�CTsymbol�Fax Page End Event has occurred��FaxReceiver_ECTF_Qualifier�CTuint�Reason why the event happened; One of the values in table in next section��FaxReceiver_ECTF_Data�CTkvs_ct�Additional data accompanying the event; One of the values in table in next section��FaxReceiver_ECTF_Error�CTerror�One of error codes defined for high level fax operations��

FaxReceiver_ECTF_NegNotify�Fax Negotiations Event��Event specific keys�Value Type�Description��FaxReceiver_ECTF_EventID�CTsymbol�Fax Negotiations Notification��FaxReceiver_ECTF_Qualifier�CTuint�Reason why the event happened ; One of the values in table in next section��FaxReceiver_ECTF_Data�CTkvs_ct�Additional data accompanying the event; One of the keys in the table in next section��FaxReceiver_ECTF_Error�CTerror�One of error codes defined for high level fax operations��� AUTONUMLGL �10.7.9.�	Fax Receiver Event Qualifier Values

The following cause codes are returned as keys in the event object.  The following table lists the values a Fax Receiver resource can return in the Qualifier standard event key.  

Table � seq table �69�:  Fax Receiver Event Qualifier Values



Qualifier�Type�Description��FaxReceiver_ECTF_Local�CTuint�The Local Fax Resource initiated the event��FaxReceiver_ECTF_Remote�CTuint�The Remote Fax Device initiated the event.  ��� AUTONUMLGL �10.7.10.�	Fax Receiver Data Values

The Fax Receiver  should add several keys to the standard event object when the information is available.

The following event data keys may be added to a PageEnd event:  



Table � seq table �70�:  Fax Receiver Event Data Values



Data Keys�Type�Description��Pagestransferred�CTuint�Number of fax pages transferred��SMpagenum�CTuint�Page of SM which was transferred��Headerpagenum�CTuint�Latest Page Number on Fax Header��The following event data keys may be added to a NegNotify event:

Table � seq table �71�:  Fax Receiver Event Data Values (NegNotify event)



Data Keys�Type�Description��Remoteid�char *�Remote fax device’s id��Subaddress�char *�Subaddress��Password�char *�Password for Send Operations��� AUTONUMLGL �10.7.11.�	Low Level Fax Events

The following events may be received during the course of a low level fax procedure, if the FAXEVENT parameter is set to 1.



Faxll_ECTF_PageEnd�Low Level Fax Page End Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Fax Page End Event has occurred��Faxll_ECTF_Qualifier�CTuint�Reason why the event happened; One of the values in table in next section��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event; One of the values in table in next section��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��

Faxll_ECTF_NegNotify�Fax Negotiations Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Fax Negotiations Notification��Faxll_ECTF_Qualifier�CTuint�Reason why the event happened ; One of the values in table in next section��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event; One of the keys in the table in next section��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��� AUTONUMLGL �10.7.12.�	Low Level Fax Event Qualifier Values

The following cause codes are returned as keys in the event object.  The following table lists the values a low level Fax resource can return in the Qualifier standard event key.  

Table � seq table �72�:  Low Level Fax Event Qualifier Values



Qualifier�Type�Description��Faxll_ECTF_Local�CTuint�The Local Fax Resource initiated the event��Faxll_ECTF_Remote�CTuint�The Remote Fax Device initiated the event.  ��� AUTONUMLGL �10.7.13.�	Low Level Fax Event Data Keys

The low level Fax Resource should add several keys to the standard event object when the information is available.

The following event data keys may be added to a PageEnd event:  

Table � seq table �73�:  Low Level Fax Event Data Keys



Data Keys�Type�Description��Pagestransferred�CTuint�Number of fax pages transferred��SMpagenum�CTuint�Page of SM which was transferred��Headerpagenum�CTuint�Latest Page Number on Fax Header��Remoteid�char *�Remote fax device’s id��Badscanlines�CTuint�Number of bad scan lines observed��The following event data keys may be added to a NegNotify event. Please note that for keys such as Remoteid, SEP, DCS, DIS, etc. that the data returned with the event is formatted exactly as transmitted or received during fax negotiations; the data content is a series of octets whose data type is char *:

Table � seq table �74�:  Low Level Fax Event Data Keys (NegNotify event)



Keyname�Type�Description��Remoteid�char *�Remote fax device’s id��Subaddress�char *�Subaddress��SEP�char *�Selective Polling Field��Password�char *�Password��DCS�char *�Fax Negotiate data��DIS�char *�Fax Negotiate data��DTC�char *�Fax Negotiate data��NSC�char *�Fax Negotiate data��NSF�char *�Fax Negotiate data��NSS�char *�Fax Negotiate data���	

� AUTONUMLGL �10.8.�	Function Details

This section defines the details of the S.100 FAX Resource functions.    There are two types of functions, High Level and Low Level.  These will be defined below. 

� AUTONUMLGL �10.8.1.�	High Level Functions



CTfaxhl_Receive�tc "FunctionName" \l 0��Receive fax document��Name:�CTstatus CTfaxhl_Receive(Group, SM, RTC, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���char *�SM�Pointer to Spatial Media to store received fax data��Output:�None����Standard:�CTkvs_ct�RTC�Run Time Control object���CTkvs_ct�ParmList	�List of fax procedure parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information  struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function receives  facsimile data and stores them in the specified SM.   If more than one page is received, it is stored in a single SM.   The application may optionally enable the generation of events at the end of the T.30 negotiation phase (phase B) and at the end of each page (phase D).  The application may optionally place the Fax Receiver into Ready Mode to enable receipt of a FaxSender_ECTF_Start (RTC) command by setting the Startmode procedure parameter.  

The arguments for this function are defined as follows:

SM�Specifies an SM object to store the received data.  The  SM object name is a null-terminated ASCII string of the form "ContainerName:SM_Name". ��RTC�Specifies the handle of the runtime control object that determines how this function is to be started or terminated��ParmList�Specifies the list of fax procedure parameters to apply to this function.  Fax procedure parameters for a Fax Receiver are listed  in � REF _Ref339877406 \* MERGEFORMAT �Table 54�.���The application may determine if a particular parameter name of a resource is supported and the ranges  of the parameter.   The names  and ranges are determined by calling CTgrp_GetParameterNames( ) and CTgrp_GetParameterRanges( ) functions using the parameters in the parameter tables.��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.  



FaxReceiver_ECTF_Receive�Fax Receive Completion Event��Event specific keys�Value Type�Description��FaxReceiver_ECTF_EventID�CTsymbol�Fax Receive Completion Event has occurred��FaxReceiver_ECTF_Data�CTkvs_ct�One of the values in Data Key table for FaxReceiver (see Unsolicited Events section)��FaxReceiver_ECTF_Error�CTerror�One of error codes defined for high level fax operations��Cautions

None. 

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBADRTC	(	Invalid Runtime Control Object

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxhl_errorCOMMS	(	Communications lost before completion of function

CTfaxhl_errorBADSM	(	Bad or corrupted Spatial Media Object

CTfaxhl_errorOUTOFDATA	(	Not enough data to fulfill FAX request



CTfaxhl_Send�tc "FunctionName" \l 0��Send fax documents��Name:�CTstatus CTfaxhl_Send(Group, SM, RTC, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTstring�SMlist[ ]�Pointer to list of one or more Spatial Media to transmit��Output:�None����Standard:�CTkvs_ct�RTC�Run Time Control object���CTkvs_ct�ParmList	�List of fax procedure parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.  ���Description

This function transmits facsimile data from a Spatial Media (SM).   This function takes a  list of one or more SMs as an argument.  Each SM object can be single or multi-page.    The application may optionally enable the generation of events at the end of the T.30 negotiation phase (phase B) and at the end of each page (phase D).  The application may optionally place the Fax Sender into Ready Mode to enable receipt of a FaxReceiver_ECTF_Start (RTC) commands by setting the Startmode procedure parameter.  

The arguments which have special meanings for this function are defined as follows:

SMlist�Specifies an array of one or more SMs to transmit.  Each element in the array is a SM object name as a null-terminated ASCII string of the form "ContainerName:SMName".  The end of the SM object list is indicated by a NULL string.��RTC�Specifies the handle of the runtime control object that determines how this function is to be started or terminated��ParmList�Specifies the list of fax procedure parameters to apply to this function.  Fax procedure parameters for a Fax Sender are listed  in � REF _Ref339877748 \* MERGEFORMAT �Table 52�.���The application may determine if a particular parameter name of a resource is supported and the range of that parameter.   The names and ranges are determined by calling CTgrp_GetParameterNames( ) and CTgrp_GetParameterRanges( ) functions using the parameters in the parameter tables.��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.  



FaxSender_ECTF_Send�Fax Sender Completion End Event��Event specific keys�Value Type�Description��FaxSender_ECTF_EventID�CTsymbol�Send has completed��FaxSender_ECTF_Data�CTkvs_ct�One of the values in Data Key table for FaxSender (see Unsolicited Events section)��FaxSender_ECTF_Error�CTerror�One of error codes defined for high level fax operations��Cautions

None.

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBADRTC	(	Invalid Runtime Control Object

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxhl_errorCOMMS	(	Communications lost before completion of function

CTfaxhl_errorBADSM	(	Bad or corrupted Spatial Media Object

CTfaxhl_errorOUTOFDATA	(	Not enough data to fulfill FAX request



CTfaxhl_Stop�tc "FunctionName" \l 0��Stop High Level Fax Procedure��Name:�CTstatus CTfaxhl_Stop(Group, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle��Output:�None����Standard:�CTkvs_ct�ParmList	�List of fax procedure parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.���Description

This function can be used to stop a high level fax procedure and return the fax resource into an idle state. 

The arguments for this function are defined as follows:

Group�Specifies the handle of an existing Group object��ParmList�Specifies the list of fax procedure parameters to apply to this function.  Fax procedure parameters for a Fax Receiver are listed  in � REF _Ref339877406 \* MERGEFORMAT �Table 54�.��TranInfo �Specifies the handle of the KVSet in which functional return information is returned.��Mode�Specifies either asynchronous or synchronous mode.  Choose one only:���CT_modeASYNC:           Runs this function asynchronously.�CT_modeSYNC:               Runs this function synchronously.��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.  



FaxSender_CT_Stop�Fax Sender Stop Completion Event��Event specific keys�Value Type�Description��FaxSender_CT_EventID�CTsymbol�Fax Sender Stop Completion Event has occurred��FaxSender_CT_Error�CTTerror�One of error codes defined for high level fax operations��FaxReceiver_ECTF_Stop�Fax Receiver Stop Completion Event��Event specific keys�Value Type�Description��FaxReceiver_ECTF_EventID�CTsymbol�Fax Receiver Stop Completion Event has occurred��FaxReceiver_ECTF_Error�CTerror�One of error codes defined for high level fax operations��Cautions

None.  

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTTfaxhl_errorCOMMS	(	Communications lost before completion of function

�

� AUTONUMLGL �10.8.2.�	Low Level Functions



CTfaxll_BeginNegotiate �tc "FunctionName" \l 0��Begin fax negotiations��Name:�CTstatus CTfaxll_BeginNegotiate(Group,  ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle��Output:�None����Standard:�CTkvs_ct�ParmList	�List of fax procedure parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.���Description

This function will set up and execute Fax Negotiations (Phase B) at the beginning of a fax procedure.  This function must be used before the first use of a low level SendPage or ReceivePages function.  If further negotiations are needed later in the procedure, the ForceNegotiate function should  be used.  Reporting for this function can take place via an optional NegNotify or in a synchronous mode. 

The arguments for this function are defined as follows:



ParmList�Specifies the list of fax procedure parameters to apply to this function.  Fax procedure parameters for low level fax functions are listed  in � REF _Ref339877866 \* MERGEFORMAT �Table 56�.���The application may determine if a particular parameter name of a resource is supported and the range  of that parameter.   The names  and ranges are determined by calling CTgrp_GetParameterNames( ) and CTgrp_GetParameterRanges( ) functions using the parameters in the parameter tables.��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.  



Faxll_ECTF_BeginNegotiate�Begin Negotiate Completion Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Fax Begin Negotiate has completed.  ��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event.��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��Cautions

Timing considerations for fax in a Client Server environment will generally require that this function be executed by aserver. 

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxll_errorCOMMS	(	Communications lost before completion of function

CTfaxll_End  �tc "FunctionName" \l 0��Ends a fax procedure��Name:�CTstatus CTfaxll_End (Group, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle��Output:�None����Standard:�CTkvs_ct�ParmList	�List of fax procedure parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.���Description

This function ends a low level fax procedure and must be called to return to Idle state after a completed low level fax procedure.  

The arguments for this function are defined as follows:



ParmList�Specifies the list of fax procedure parameters to apply to this function.  Fax procedure parameters for low level fax functions are listed  in � REF _Ref339877866 \* MERGEFORMAT �Table 56�.  ���The application may determine if a particular parameter name of a resource is supported and the range  of that parameter.   The names  and ranges are determined by calling CTgrp_GetParameterNames( ) and CTgrp_GetParameterRanges( ) functions using the parameters in the parameter tables.��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.  



Faxll_CT_End�Low Level Fax End Completion Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Fax End function has completed.  ��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event.��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��Cautions

None.  

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxll_errorCOMMS	(	Communications lost before completion of function



CTfaxll_ForceNegotiate �tc "FunctionName" \l 0��Request Fax Negotiations��Name:�CTstatus CTfaxll_ForceNegotiate(Group,  ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle��Output:�None����Standard:�CTkvs_ct�ParmList	�List of fax procedure parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.���Description

This function forces the re-negotiation of a fax procedure to sending or receiving the next page and allows the application to specify new fax procedure parameters.

The arguments for this function are defined as follows:



ParmList�Specifies the list of fax procedure parameters to apply to this function.  Fax procedure parameters for low level fax functions are listed  in � REF _Ref339877866 \* MERGEFORMAT �Table 56�.���The application may determine if a particular parameter name of a resource is supported and the range  of that parameter.   The names  and ranges are determined by calling CTgrp_GetParameterNames( ) and CTgrp_GetParameterRanges( ) functions using the parameters in the parameter tables.��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.  



Faxll_ECTF_ForceNegotiate�Force Negotiate Completion Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Fax Force Negotiate Event has occurred��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event.��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��Cautions

Timing considerations for fax in a Client Server environment will generally require that this function be executed by an S.100 server 

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxll_errorCOMMS	(	Communications lost before completion of function



CTfaxll_Init �tc "FunctionName" \l 0��Initialize fax resource��Name:�CTstatus CTfaxll_Init(Group, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle��Output:�None����Standard:�CTkvs_ct�ParmList	�List of fax procedure parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.���Description

This function initializes a fax resource and must be called by an application prior to a low level BeginNegotiate function.  

The arguments for this function are defined as follows:

ParmList�Specifies the list of fax procedure parameters to apply to this function.  Fax procedure parameters for low level functions are listed  in Table 6.���The application may determine if a particular parameter name of a resource is supported and the range  of that parameter.   The names  and ranges are determined by calling CTgrp_GetParameterNames( ) and CTgrp_GetParameterRanges( ) functions using the parameters in the parameter tables.��Completion Event 

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.  



Faxll_ECTF_Init�Low Level Fax Init Completion Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Fax Init has completed.  ��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event.��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��Cautions

None.  

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxll_errorCOMMS	(	Communications lost before completion of function



CTfaxll_ReceivePages�tc "FunctionName" \l 0��Receive fax Page��Name:�CTstatus CTfaxll_ReceivePages(Group, SM, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTstring�SM�Pointer to Spatial Media to store received fax page��Output:�None����Standard:�CTkvs_ct�ParmList	�List of fax page parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.���Description

This function receives one or more facsimile page and stores it  in the specified SM.    The application may optionally enable the generation of events at the end of the T.30 negotiation phase (phase B) by setting the appropriate fax procedure parameters using the CTfaxll_Init( ) function prior to starting the fax receive.

The arguments for this function are defined as follows:

SM�Specifies an SM object to store the received fax page.  The  SM object name is a null-terminated ASCII string of the form "ContainerName:SMName". ��ParmList�Specifies the list of fax parameters to apply to this function.  Fax page parameters for low level functions are listed in � REF _Ref339878493 \* MERGEFORMAT �Table 57�.���The application may determine if a particular parameter name of a resource is supported and the range  of that parameter.   The names  and ranges are determined by calling CTgrp_GetParameterNames( ) and CTgrp_GetParameterRanges( ) functions using the parameters in the parameter tables.��Completion Event 

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.





Faxll_ECTF_ReceivePages�Receive Pages Completion Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Receive Pages Function has Completed.��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event; One of the values in data key table 9 or 10.��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��Cautions

Timing considerations for fax in a Client Server environment may require that this function be executed by a server, especially if the application will need to force negotiations during the fax procedure.  

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxll_errorCOMMS	(	Communications lost before completion of function

CTfaxll_errorBADSM	(	Bad or corrupted Spatial Media Object

CTfaxll_errorOUTOFDATA	(	Not enough data to fulfill FAX request





CTfaxll_SendPage�tc "FunctionName" \l 0��	Send fax page��Name:�CTstatus CTfaxll_SendPage(Group, SM, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTstring�SM[ ]�Pointer to  Spatial Media to transmit��Output:�None����Standard:�CTkvs_ct�ParmList	�List of fax page parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.���Description

This function transmits facsimile data from a Spatial Media (SM).   This function takes a single page SM object as an argument.  For an SM object composed of ASCII data, the function will send the full SM object as specified even if it spans multiple pages.  The application may optionally enable the generation of events at the end of the T.30 negotiation phase (phase B)  by setting the Faxevent parameter using the CTfaxll_Init() function prior to starting the fax transmission.

The arguments for this function are defined as follows:

SM�Specifies an SM object to transmit.  The  SM object name is a null-terminated ASCII string of the form "ContainerName:SMName". ��ParmList�Specifies the list of fax page parameters to apply to this function.  Fax procedure parameters for low level fax functions are listed  in � REF _Ref339877866 \* MERGEFORMAT �Table 56�.���The application may determine if a particular parameter name of a resource is supported and the range  of that parameter.   The names  and ranges are determined by calling CTgrp_GetParameterNames( ) and CTgrp_GetParameterRanges( ) functions using the parameters in the parameter tables.��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.  





Faxll_ECTF_SendPage�Send Page Completion Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Send Page has completed��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event.  ��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��Cautions

Timing considerations for fax in a Client Server environment may require that this function be executed by a server.   

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxll_errorCOMMS	(	Communications lost before completion of function

CTfaxll_errorBADSM	(	Bad or corrupted Spatial Media Object

CTfaxll_errorOUTOFDATA	(	Not enough data to fulfill FAX request



CTfaxll_Stop�tc "FunctionName" \l 0��Stop Low Level Fax Procedure��Name:�CTstatus CTfaxll_Stop(Group, SM, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTstring�SM�Pointer to Spatial Media to store received fax data��Output:�None����Standard:�CTkvs_ct�ParmList	�List of fax procedure parameters to apply to this function���CTranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values.���Description

This function can be used to stop a low level fax procedure and return the fax resource into an idle state. 

The arguments for this function are defined as follows:



SM�Specifies an active SM.   The  SM object name is a null-terminated ASCII string of the form "ContainerName:SMName". ��ParmList�Specifies the list of fax procedure parameters to apply to this function.  Fax procedure parameters for a low level Fax Resource are listed  in Table 6.��Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments (if applicable) contain the values of their corresponding Keys.  In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL. 



Faxll_ECTF_Stop�Low Level Fax Stop Completion Event��Event specific keys�Value Type�Description��Faxll_ECTF_EventID�CTsymbol�Fax Low Level Stop has completed.  ��Faxll_ECTF_Data�CTkvs_ct�Additional data accompanying the event.��Faxll_ECTF_Error�CTerror�One of error codes defined for low level fax operations��Cautions

None.  

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Server unable to service request

CT_errorSYSTEM	(	System error occurred during the execution of this function

CTfaxll_errorCOMMS	(	Communications lost before completion of function

CTfaxll_errorBADSM	(	Bad or corrupted Spatial Media Object

�� AUTONUMLGL �11.�	S.100 Call Channel Resource�xe "Call Channel Resource" \b��xe "resource:Call Channel Resource" \b�

� AUTONUMLGL �11.1.�	Introduction

The S.100 Call Channel Resource is an S.100 resource that represents a call data stream component of a telephony interface.  The call control aspects of the telephony interface are not represented using the Call Channel Resource.  

The Call Channel Resource is presented by the vendor of a �xe "network interface device"�network interface device to the S.100 server for inclusion into a Group. Once this resource is included into an S.100 Group, the call data stream associated with the call is switched onto the S.100�xe "switch fabric"� switch fabric.  The data stream is then available for media processing by other resources in the Group, for example a player resource can play data onto the call data stream, or a recorder resource can record data from the call data stream.

The S.100 framework will handle the switching on the switch fabric to ensure that the call data stream associated with the Call Channel Resource is properly connected with other resources contained within a Group.

Unlike other S.100 resources, the Call Channel Resource does not have an Application Programming Interface (API).  The Call Channel Resource does have parameters which can be queried by an application developer.  These parameters will provide the application developer, the necessary information for them to control the appropriate telephony device using the call control API presented by the network interface device.

S.100 does not define a  call control API.  Instead, it provides a solution for media processing applications.  There are already several very good call control APIs available today on various platforms, for example Microsoft’s Telephony API (TAPI) �xe "TAPI"��xe "call control:TAPI"� for Windows, Windows 95 and WinNT, and also Novell and AT&T’s Telephony Services API (TSAPI) �xe "TSAPI"��xe "call control:TSAPI"�for Windows, OS/2, Netware, UNIX and the Apple Macintosh.  

ECTF’s Computer Telephony Platform Services Working Group does not perceive a need to introduce another standard. However, ECTF will define the capability for developers to “hook” the Call Channel data stream into the S.100 media processing “engine”.  This will allow application developers to perform media processing using the S.100 API on a call.



� AUTONUMLGL �11.2.�	S.100 Telephony Model�xe "telephony model"��xe "call control:telephony model"�

The telephony model assumed by this specification is shown in � REF _Ref339767451 \* MERGEFORMAT �Figure 19�..

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �19�:  S.100 Server Environment

� AUTONUMLGL �11.2.1.�	Call Control in the S.100 Server Environment�xe "call control:in the S.100 Server environment"��xe "S.100:call control"�

Although S.100 does not explicitly specify a Call Control method, call control remains a part of the model described by the S.100 framework.

There are a number of existing call control methods (i.e., APIs) that will function in conjunction with the Server.  For example call control can be accomplished by:

using a command and status link between the S.100 server and the local Switching Platform, known as a �xe "call control:CTI link"�CTI Link. Control of this link is provided by call control APIs for example, �xe "TSAPI"��xe "call control:TSAPI"�TSAPI.

direct access to the control channels of the switching network via a technology specific API, for example �xe "TAPI"��xe "call control:TAPI"�TAPI.

� AUTONUMLGL �11.2.2.�	Media (Data Stream) Control in the S.100 Server Environment

�xe "S.100:media (data stream) control"�Irrespective of the call control method supplied by the network interface vendor, S.100 will define the behavior of the data stream aspects of the network interface, or Call Channel Resource.  This will enable network interface developers to develop network interfaces that will integrate with the S.100 Server.  

This means that once a call has been established using whatever call control API is provided by the interface vendor, an S.100 application can then treat the Call Channel Resource as a standard S.100 resource, for example, by forming a Group which includes the Call Channel Resource and other media processing resources (that is, the S.100 server software will ensure that the appropriate data streams are connected so that the application can perform media processing on the call as required).

� AUTONUMLGL �11.3.�	Call Channel Resource Programming Model�xe "call control:CCR programming model"��xe "resource:call channel resource programming model"�

A Call Channel Resource can only be used in a Group if the data stream associated with the resource can be switched by the S.100 server onto the server’s switch fabric.  The S.100 server will be able to switch the data stream onto the switch fabric if the network interface provider has registered the Call Channel Resources with the S.100 server according to the S.100 Call Channel Resource developers guide.

An application can receive a Group already configured with a Call Channel Resource and other media resources ready for call processing if it uses the �xe "System Call Router"�System Call Router (SCR) API.  The SCR will handoff a pre-configured Group to an application that has requested one.  The Group will contain a Call Channel Resource and other media resources as specified by an application in its Application Profile.  The application can query the state of the Call Channel Resource using the parameter CCR_ECTF_State and the function �xe "functions:CTgrp_GetParameters()"�CTgrp_GetParameters( ). If the state is CTccr_uintActive (i.e. call associated with Call Channel Resource is active), then the application can continue processing the call.

If the application does not wish to use the SCR, or indeed is developing an SCR, the application can use the Call Control API provided by the �xe "call control:network interface device"�network interface device. If the group is already in hand, the call control API to be used is identified by obtaining the value of the appropriate CCR parameter (CCR_ECTF_ProviderType). Other required parameters related to that API by getting the values of other parameters (which are described in Section 11.6.1). With this information, the call control API corresponding to the CCR may then be used to perform standard call control actions (e.g., makecall, answercall). If the group is not yet established, the function �xe "functions:CTgrp_Create()"�CTgrp_Create() may be used to create a group with a telephony interface device controlled by an appropriate call control service provider. This is done by specifying the appropriate CCR parameters and values for the CCR to be configured in the group. The details that can be include:

Call Control Provider Type

Call Control Service Provider Identifier

Call Control Device Name

The Call Control Provider Type�xe "call control:provider type"� is a string parameter whose value can either be a standard provider type (e.g., TAPI, TSAPI, CAPI) or a system-specific name.

The S.100 server uses the details of the telephony interface device passed with the CTgrp_Create( ) function and allocates to the Group the Call Channel Resource associated with the specific telephony interface device. If the Call Channel Resource has already been allocated to a different Group, the CTgrp_Create( ) function call will fail.

If no telephony interface details are passed with the CTgrp_Create( ) function, the Call Channel Resource that is allocated will be one that does not have a connected call on it (i.e. idle state).  If no idle Call Channel Resource is available, the CTgrp_Create() function will fail.

Once a Group has been created and configured, and the Call Channel Resource has a connected call associated with it, the application can perform media processing on the call using Group and other resource APIs as required.

� AUTONUMLGL �11.3.1.�	Getting Information about a Call Channel Resource

There are various pieces of information an application can retrieve from a Call Channel Resource. 

To retrieve any Call Channel Resource parameter information, the application can call the function CTgrp_GetParameters( ). Resource parameter information includes:

�xe "call channel resource: service provider ID"�Call Control Provider Type (e.g.  TAPI, TSAPI)

�xe "call channel resource:service provider ID"�Call Control Service Provider Identifier  (e.g.  TAPI Service Provider Identifier Name)

�xe "call channel resource:device name"�Call Control Device Name (e.g.  TAPI Device address)

�xe "call channel resource:resource state"�Call Channel Resource State (Active, Idle or OnHold)

�xe "call channel resource:call length"�Length of Time In Seconds Call Channel was Active (includes time on hold).

�xe "call channel resource:extensions"�The amount of information returned by a Call Channel Resource defined by the S.100 framework (i.e., corresponding to S.100 symbols) is very limited.  A network interface developer could if they wish to, extend the information set returned by a Call Channel Resource, for example have a new Call Channel Resource state value for conferenced or a new parameter to indicate if the call was diverted from another device etc.  The framework does not restrict developers from extending the definitions provided by S.100, but it is the vendor’s responsibility to document their own extensions.  For more information that is call related, the developer can also refer to the call control API provided by the network interface device (or the SCR).

� AUTONUMLGL �11.4.�	Events

Since there is no API associated with the Call Channel Resource, only unsolicited events are applicable to this resource (i.e. no completion events).

� AUTONUMLGL �11.4.1.�	Unsolicited Events�xe "call channel resource:unsolicited events"��xe "events:call channel resource unsolicited events"�

Unsolicited events are events which do not result from any direct action taken by the application.  These events are typically generated as a result of remote occurrences which take place across the switching network.  Examples include a remote disconnect during a call.

Table � seq table �75�:  Call Channel Resource Unsolicited Events



Event ID:�Description��CCR_ECTF_StateChangeEvent�This event indicates a change of state of the Call Channel Resource.  This event is automatically generated whenever the state of the Call Channel Resource changes from its current state to a new state.  A Call Channel Resource can have one of 3 states:-

CTccr_uintActive - when the Call Channel Resource is active (i.e. has a call).

CTccr_uintIdle - when the Call Channel Resource has no call or a disconnected call (either remote or local disconnect).

CTccr_uintHold - when the call associated with the Call Channel Resource has been put on hold by the remote party.��� AUTONUMLGL �11.5.�	Unsolicited Event Details

Detailed information with regards to the unsolicited events and the data returned with these events follows:



CCR_ECTF_StateChangeEvent�Call Channel Resource State Change Event��Description

This is an unsolicited event returned to the application when the current Call Channel Resource state changes.

A Call Channel Resource may change state for various reasons. 

A Call Channel in the idle state with no call on it, may go to the active state when a new call arrives or is made from its associated telephony interface device.  

A Call Channel in the active state may go to the idle state when either the remote or local party disconnects the call

A Call Channel in the active state may also go to the hold state if the call on the Call Channel is placed on hold by the remote party.  Note that if the application places on hold the call associated with the Call Channel Resource, the Call Channel Resource will remain in the active state.  The Call Channel Resource only goes to the onhold state if the call has been placed on hold by the remote party.

Event Data

Several CCR_ECTF_StateChangeEvent events may occur during the lifetime of a Call Channel Resource.  An application can extract the new state from the event using the following key:

Table � seq table �76�:  Call Channel Resource Event Data



Key�Data Type�Description��CCR_ECTF_State�CTuint�Indicates the new state of the Call Channel Resource. Possible values are:- 

CTccr_uintActive - when the Call Channel Resource has an active call.

CTccr_uintIdle - when the Call Channel Resource has no call or a disconnected call (either remote or local disconnect).

CTccr_uintHold - when the call associated with the Call Channel Resource has been placed on hold by the remote party.���autonumlgl �11.6.�	Data Definitions

The following section describes the data definitions including any types, and parameters used by this program interface.

� AUTONUMLGL �11.6.1.�	Parameters

Call Channel Resource parameters are read-only parameters.  They may be queried using the CTgrp_GetParameters( ) function.

The following parameters are associated with a Call Channel Resource:

Table � seq table �77�:  Call Channel Resource Parameters



Parameter Name�Type�Description��CCR_ECTF_ProviderType�CTstring�Call Control provider type.  This parameter is used to identify the type of the Call Control provider for a network interface device.  The Call Control provider type also identifies the call control API provided by the network interface device.  Among the possible S.100 defined values are:-

CTccr_stringTypeTAPI- Call Control provider is Microsoft’s TAPI.  The call control API for the telephony interface device is Microsoft’s TAPI.

CTccr__stringTypeTSAPI - Call Control provider is Novell/AT&T’s TSAPI.  The call control API for the telephony interface device is Novell/AT&T’s TSAPI.

CTccr__stringTypeCallPath - Call Control provider is IBM’s CallPath.  The call control API for the telephony interface device is IBM’s CallPath API.

CTccr__stringTypeXTEL - Call Control provider is SUN’s XTel.  The call control API for the telephony interface device is SUN’s XTel API

CTccr_stringTypeCAPI - Call Control Provider is the Common ISDN API (CAPI) of the COMMON-ISDN-API working group.

CTccr__stringTypeCTC - Call Control Provider is Dialogic’s CT Connect.  The call control API for the telephony interface is Dialogic’s CT Connect.

Network interface vendor supplied value.  This means that the API is specific to a particular vendor’s network interface device.

This parameter can be used when calling the function CTgrp_Create( )to indicate the type of call control provider the Call Channel Resource should support.��CCR_ECTF_ServiceProviderID�CTstring�This parameter is used to identify the Call Control’s Service Provider name.  This value is defined by the system administrator installing the network interface device and its associated service provider.  The format of the service provider name may be defined by the network interface device vendor.

This parameter can be used when calling the function CTgrp_Create( )to indicate the name of the call control service provider the Call Channel Resource should support��CCR_ECTF_DeviceName�CTstring�This parameter is used to identify the actual telephony interface device name used by the Call Control API.  This value is defined by the system administrator installing the network interface device and its associated service provider.  The format of the device name may be defined by the network interface device vendor.

This parameter can be used when calling the function CTgrp_Create( )to indicate the name of the telephony interface device the Call Channel Resource should support��CCR_ECTF_State�CTuint�This parameter provides the current state of the Call Channel Resource. Possible values are:-

CTccr_uintActive - when the Call Channel Resource has an active call.

CTccr_uintIdle - when the Call Channel Resource has no call or a disconnected call (either remote or local disconnect).

CTccr_uintHold - when the call associated with the Call Channel Resource has been placed on hold by the remote party.��CCR_ECTF_NonIdleTime�CTuint�Time in seconds the Call Channel Resource was active or on hold for a single call (i.e. time between two idle states).  This parameter can be examined at any time during a call and it will return the time from when the call was first active to the current time.  The value in the parameter is reset every time a Call Channel Resource goes active from the idle state.  This parameter’s value can be used for billing purposes.��The existence of a PARAMETER and the possible values that this parameter may take may be queried via the CTgrp_GetCharacteristics() and the CTgrp_GetCapabilities() functions respectively.

�autonumlgl �11.7.�	Constants

This section summarizes and defines the Call Channel Resource specific constants:

Table � seq table �78�:  Call Control Provider Type Constants



Constant�Description��CTccr_stringTypeTAPI�Call Control provider is Microsoft’s TAPI.  The call control API for the telephony interface device is Microsoft’s TAPI��CTccr__stringTypeTSAPI�Call Control provider is Novell/AT&T’s TSAPI.  The call control API for the telephony interface device is Novell/AT&T’s TSAPI��CTccr__stringTypeCallPath�Call Control provider is IBM’s CallPath.  The call control API for the telephony interface device is IBM’s CallPath API.��CTccr__stringTypeXTEL�Call Control provider is SUN's XTel.  The call control API for the telephony interface device is SUN’s XTel API��CTccr__stringTypeCTC�Call Control Provider is Dialogic’s CT Connect.  The call control API for the telephony interface is Dialogic’s CT Connect��CTccr_stringTypeCAPI�Call Control Provider is compliant with the Common ISDN API (CAPI).��

Table � seq table �79�:  Call Channel Resource State Constants



Constant�Description��CTccr_uintActive�Indicates that the Call Channel Resource has an active call��CTccr_uintIdle�Indicates that the Call Channel Resource has no call or a disconnected call (either remote or local disconnect).��CTccr_uintHold�Indicates the call associated with the Call Channel Resource has been placed on hold by the remote party.��

�autonumlgl �11.8.�	Runtime Control (RTC)

� AUTONUMLGL �11.8.1.�	Recognized Conditions

A Call Channel Resource can be used to trigger Run Time Control actions (i.e. send a control message to another resource in the Group, depending on some change of state within the Call Channel Resource).

The following conditions may be recognized by a Call Channel Resource and used to trigger a runtime control action



Table � seq table �80�:  Call Channel Resource Runtime Conditions



Condition�Description��CCR_ECTF_ActiveCondition�This condition is used if the applications wants to generate a RTC action when the Call Channel Resource goes to the active state.��CCR_ECTF_IdleCondition�This condition is used if the applications wants to generate a RTC action when the Call Channel Resource goes to the idle state��CCR_ECTF_OnHoldCondition�This condition is used if the applications wants to generate a RTC action when the Call Channel Resource goes to the onhold state���� AUTONUMLGL �12.�	Automatic Speech Recognition�xe "ASR resource" \b��xe "resource:ASR resource" \b�

�autonumlgl �12.1.�	Introduction

Automatic Speech Recognition�xe "automatic speech recognition" \b� (ASR) �xe "ASR" \t "see Automatic speech recognition"� is a Group of technologies that transform speech into a form that can be understood by computers.  Among the capabilities�xe "ASR capabilities"��xe "ASR:capabilities"� of ASR are:

Speech Recognition�xe "speech recognition"��xe "automatic speech recognition:speech recognition"�: utterances (usually from a class of words or phrases) are translated into text form. E.g., the spoken word "one" is translated into a variable with value 1.  Different ASR resources may support different types of recognition, such as discrete or connected word, or small versus large vocabulary.

Speaker Verification�xe "speaker verification"��xe "automatic speech recognition:speaker verification"�: the utterance of the speaker is matched against stored voice characteristics of a particular individual, and ASR determines if this individual is the one who made the utterance.  The process is analogous to comparing a person's face with a photograph.

Speaker Identification�xe "speaker identification"��xe "automatic speech recognition:speaker identification"�: the utterance of the speaker is matched against stored voice characteristics of a group of speakers, and the identity of the speaker is determined.  The process is analogous to matching a person's face with ones in a group photograph to determine the identity of the individual.

The ASR resource is used by a Client Application during the conversation portion of a call (i.e. excluding call setup and teardown).  This API is vendor and client operating system independent.

An ASR resource allows the user to perform any of the speech recognition capabilities supported by that individual ASR resource, as determined by configuration data contained in an ASR Context object.

�autonumlgl �12.1.1.�	Limitations�xe "ASR limitations"��xe "automatic speech recognition:limitations"�

Automatic Speech Recognition is a rapidly evolving technology, with new advances coming at a rapid pace.  We have tried to make this API specification general enough to accommodate the anticipated range of technologies. Consequently, most vendors will support only a subset of all the functions described here (e.g., vendors may support training of new words acoustically, phonetically, or not at all).

In those cases where a new technology cannot fit into the standard API, we urge the technology vendor to contact the S.100 working Groups to receive assistance in expanding the API to accommodate the new technology. 

�autonumlgl �12.2.�	Configuration, Initialization, and Runtime

ASR Resources are complex software and hardware entities.  A typical Recognizer will consist of a specialized computer board; extensive basic software that must be downloaded to the board, which provides underlying recognition capabilities; and code fragments and/or data files (which we call “Contexts,” below) that must be downloaded to the board to perform specific recognition tasks. Not all of these tasks can take place “in real time.” 

For example, the basic software is often a very large file that can take several seconds to download. �xe "grammar"��xe "automatic speech recognition:grammar"�Grammars, which are presented by the application developer in text format, may need substantial processing to transform into a downloadable form.

This section describes when particular actions to prepare the ASR Resource must be available, at a minimum.  For example, grammars often require substantial processing before they can be used by the Recognizer.  At a minimum, a vendor must make tools available to transform the grammar from text to a downloadable format at configuration time. If a vendor can also provide initialization or runtime transformation, these will be considered enhancements to the S.100 specification.

�autonumlgl �12.2.1.�	Configuration Time Actions

At configuration time, the grammars used by the application(s) of interest are converted from their ASCII text format into a format that can be loaded during initialization or during runtime.  The vendor of the ASR Resource will provide tools to accomplish this transformation.

�autonumlgl �12.2.2.�	Initialization Time Actions

At system initialization, we expect that the Recognizer will be loaded with all relevant software before joining the pool of available Recognizers.  The vendor will provide configuration information.

�autonumlgl �12.2.3.�	Run Time Actions

At runtime Contexts, if supported, may be loaded on the Recognizer. (Of course, ASR recognition also takes place during runtime.)

�autonumlgl �12.3.�	Function Summary

�autonumlgl �12.3.1.�	Recognition Functions�xe "functions:ASR resource functions"�



Function Summary�Description��CTasr_StartRecognition(Group, RTC, ParmList, TranInfo, Mode)�Start Recognition��CTasr_RetrieveRecognition(Group, ResultType, RTC, ParmList, TranInfo, Mode)�Retrieve the recognition results��

�autonumlgl �12.3.2.�	Word Functions



Function Summary�Description��CTasr_WordCommit ( WordName, ContextName, Group, ParmList,  TranInfo, Mode)�Commit a Word to a Context��CTasr_WordCreate ( WordName, WordString, ContextName, Group, ParmList, TranInfo, Mode)�Create a Word object��CTasr_WordDeleteLastUtterance(WordName, ContextName, Group, ParmList, TranInfo, Mode)�Delete the last utterance of a Word��CTasr_WordDeleteTraining( WordName, ContextName, Group, ParmList, TranInfo, Mode)�Delete the training of a Word��CTasr_WordDestroy ( WordName, ContextName, Group, ParmList, TranInfo, Mode)�Destroy a Word object��CTasr_WordTrain ( WordName, ContextName, Group, Results, ParmList,  TranInfo, mode)�Train a Word���autonumlgl �12.3.3.�	Context Functions



Function Summary�Description��CTasr_ContextCopy(ConContext, ResContext, Direction, Group, ParmList, TranInfo, mode)�Copy a Context between a Container and a Resource�� CTasr_ContextCreate(ContextName, Group, ParmList, TranInfo, Mode)�Create a Context object��CTasr_ContextList(Group, List, ParmList, TranInfo, Mode)�Lists the Contexts on a Resource��CTasr_ContextRemove(ContextName, Group, ParmList, TranInfo, Mode)�Remove a Context object��



�autonumlgl �12.4.�	Program Interface Overview�xe "automatic speech recognition:overview"�

All functions may be run asynchronously or synchronously.  Some common ASR technologies that are supported by this API:

Speaker dependent 

Speaker independent

Discrete words 

Continuous phrases

Phonetic

Full word 

Speaker verification

Speaker identification

Large vocabulary

Small vocabulary

Three object classes are defined for supporting ASR and the creation, storage and maintenance of the associated Contexts:

ASR class

Context Class

Context Word Class 

All of the commands reflected in this API may be issued by directly calling the function through its C bindings or indirectly bypassing the command message using the CTgrp_Execute() function.



�autonumlgl �12.5.�	Functional Overview

�autonumlgl �12.5.1.�	Recognition�xe "ASR Recognizer"��xe "automatic speech recognition:Recognizer"�

The ASR Class defines methods for collecting human voice data, analyzing that data, and reporting the results.  These results are used to identify the contents of the speech. 

An instance of the ASR class is known as a Recognizer.  A Recognizer�xe "automatic speech recognition:recognizer"� is a Resource associated with a Group.  The Recognizer takes its input data from some other Resource in the Group via a connection (e.g., TDM), typically the Primary Device (See Chapter 1 for more details).

Parameters are defined for specifying such things as Context, type of recognition, and the number of utterances required.  A complete list of Recognizer parameters is provided later in this document.

Parameters set using �xe "functions:CTgrp_SetParameters()"�CTgrp_SetParameters() remain in effect for the life of the Resource or until changed by issuing another CTgrp_SetParameters(). Parameters passed when starting an ASR operation remain in effect only for the duration of that operation.

Recognition of specified words may be used to terminate currently active functions by means of runtime control (RTC).  An example of this would be the termination of a prompt due to recognition of a specified word. 

�autonumlgl �12.5.2.�	Contexts�xe "context" \b��xe "automatic speech recognition:context" \b�

A Context is defined as a set of information the ASR Resource uses to perform ASR.  Typical Context information might include vocabulary, grammar, and parameter settings.

Typically, all or most ASR Context information is specified during configuration of the ASR resource, a process that would typically occur at system startup time and could involve vendor-specific data or operations.

Some Contexts are fixed, while others may be created, extended or modified by the application.  E.g., some functions are provided for the training of words in Contexts.

Contexts are referenced by a standard naming convention that produces unique names for each Context. Like all S.100 objects, Contexts are independent of operating system and native file systems. However, a Context from one vendor will not necessarily interoperate with a Context from another vendor, due to inevitable differences in the underlying technology provided by the vendors.

For creation and storage of ASR Contexts, the ContextClass defines methods for creating, deleting, and querying a Context object.  An instance of the Context Class is known as a Context, with type CTcontext_ct.

Contexts can exist in storage, or resident inside a Recognition resource.  Functions are provided to move Contexts between these locations.

The S.100 framework also provides means of querying the Contexts to determine their properties, such as what type of recognition they perform; the properties of Contexts will be explained later in this document. 

�autonumlgl �12.5.3.�	Context Support of Vocabularies�xe "context vocabularies"��xe "automatic speech recognition:context vocabularies"�

S.100 Contexts support recognition of specific “vocabularies,” or ranges of speech.  For example, one Context may allow telephone numbers spoken in Spanish, while another Context allows editing commands spoken in Japanese, while yet another allows any English word, but only when spoken by a particular individual.  	

The S.100 framework defines means to create, modify, and maintain a Context’s vocabulary through the  Context Word class.  An instance of the Context Word class is called a Word. Not all Recognizers will have the ability to modify their vocabulary.

Words exist only within Contexts.  When created, Words are assigned a name. Once created, words may be deleted, renamed, or trained.

�autonumlgl �12.5.4.�	Context Support of Grammars�xe "context grammars"��xe "automatic speech recognition:context grammars"�

S.100 Contexts may also include information about the word sequences that the ASR resource is expected to recognize.  For example, if “red apples” and “green beans” are both plausible ASR inputs in an application, Context grammar information can be used to specify that either of these phrases is legal while “red beans” and “apples beans” are not legal. 

Context grammars are usually specified at configuration time or earlier as part of the initial Context information.  Because the S.100 framework does not standardize configuration-time operations, the incorporation of grammar information at this time can use vendor-specific tools.  However, once a Context has been configured with grammar information, it can be used by the run-time API in a vendor-independent fashion.  In other words, ASR resources from different vendors may all be configured with a "VEGETABLES" Context that supports recognition of the phrases described above.  While the configuration process may be vendor-dependent, run-time API commands can use identical processing for any ASR resource in the "VEGETABLES" configuration. 

�autonumlgl �12.5.5.�	Grammar Specifications

The S.100 framework supports three levels of grammar specifications: Phrase Lists, “SRCL” grammars, and vendor-specific grammars.  The S.100 ASR Working Group is cooperating with the SRAPI (“Speech Recognition API”) committee, a consortium of desktop ASR vendors, to produce a joint specification for grammars.

Phrase Lists�xe "automatic speech recognition:phrase list grammars"�

An application that expects simple responses, such as “Yes,” “No,” and the like, uses Phrase Lists to inform the Resource which phrases it expects, and what a response should be - the “value” - when a phrase is found.  The S.100 specification will use Phrase Lists as defined in the �xe "SRAPI"��xe "automatic speech recognition:SRAPI"�SRAPI Committee specification, version 1.0.  A Phrase is a single line of a BNF-like format.

For example, a phrase list might be:

<Yes> := “yes” : 1 | “da” : 1 | “oui” : 1

<No> := “no” : 0 | “nyet” : 0 | “non” : 0

which would inform the Resource that the expected utterances are “yes” and “no” in various languages, and that the recognizer should return value “1” when “yes” is recognized in any language.

Since application developers specify the value of the Resource’s response, they may write applications without knowing the particulars of how a specific Recognizer operates. E.g., the application developer need not worry that the Recognizer will return “YES” instead of  “Yes.”

All S.100 ASR Resources must support Phrase Lists, for the reason cited in the paragraph above. However, Resources need not support flexible Phrase Lists. E.g., a French language ASR Resource may support only “Oui” and “Non” as valid phrases.

The special text strings “ECTF_SILENCE” and “ECTF_REJECTED” signify respectively that the Recognizer heard only silence or out-of-vocabulary speech. 

Speech Recognition Command Language (“SRCL”) Grammars�xe "automatic speech recognition:speech recognition command language"��xe "SRCL" \t "see automatic speech recognition"�

For more complex ASR Tasks, S.100 Recognizers may support, in addition to the Phrase Lists, the Speech Recognition Command Language (SRCL, pronounced “circle”) format, as specified by the SRAPI Committee, version 1.0.  SRCL defines a BNF-like grammar which can be used to specify the format of the utterances we expect. 

SRCL may be used to specify formats such as telephone numbers, credit card numbers, and local telephone numbers; simple phrases such as “yes” and “no”; and more complex sentences, such as “turn left and go forward.” As in the case of Phrase Lists, the application developer may specify values for the Recognition to return.  

Vendor Specific Grammars�xe "automatic speech recognition:vendor specific grammars"�

As ASR technology improves, we expect new grammar schemes to emerge.  Vendors may choose to provide proprietary enhancements or proprietary methods of specifying contexts; this specification provides no details or guidelines for vendor-specific extenstions.

�autonumlgl �12.5.6.�	Contexts, Resources, and Containers �xe "automatic speech recognition:context container" \b�

Contexts are stored in a container object called a Context Container.  Standard Container Management functions are used for creating, modifying, and maintaining Context containers.  The Contexts in a Container may also be manipulated using these functions. Multiple Contexts may reside in a single Container; there may be many Context Container objects.

The Context Container name is specified as part of the Context Name; therefore, the application may reference Contexts by using the fully qualified name.  For example, a Context Container called "SPANISH" may contain Contexts that recognize spoken Spanish, and a particular Context in the container called “BANK" may be used to recognize speech related to banking.  We may then use the name "SPANISH:BANK" to access this Context.

When a Context is copied to a Recognizer resource - when it "resides" on a resource - many more aspects of the Context are accessible to the application.  The "Basic Context" may be those Words, classes of Words, or phonemes that the Context can recognize.  The "Word List” is the list of words that the Context can currently recognize.  All properties of the Context are visible to the application.  A “Grammar” may be downloaded to a particular Context.  Finally, the Context has parameter settings which determine how recognition proceeds.

The Recognizer Resource itself has Properties and Settings distinct from the Contexts.

�autonumlgl �12.5.7.�	Using Multiple Contexts

Multiple Contexts�xe "automatic speech recognition:multiple contexts"� may be resident on the Recognizer at any given time.

All functions relating to ASR may invoke all Contexts resident on the resource (default), or may invoke a specific resident Context.

�autonumlgl �12.5.8.�	Speaker Verification and Identification�xe "automatic speech recognition:speaker verification"��xe "automatic speech recognition:speaker identification"�

The S.100 framework does not include any specific functions for implementing Verification and Identification. Rather, these capabilities may be provided by using Contexts and the API's ability to return acilliary information. Specifically, a Context can be used to hold identifying and verifying information for one or many speakers. Then, when the Recognizer reports recognition results, the identity of the most likely speaker can be included as ancilliary information in ASR_ECTF_LongResult. See the description of �xe "functions:CTasr_RetrieveRecognition()"�CTasr_RetrieveRecognition() for more details and an example.

�autonumlgl �12.5.9.�	Unicode Support�xe "Unicode"�

Text input to the Recognizer and output from the Recognizer is in Unicode format; for example, the WordString input parameter to CTasr_WordCreate() and the output parameter ASR_ECTF_LongResult[] are both in Unicode, with type CTstring[]. 

However, some vendors may not support the entire Unicode character set. For example, a Recognizer might expect that all characters it receives actually be in the English language (i.e., Unicode characters that directly translate to ASCII characters), and such a Recognizer would be confused by Chinese characters. The variable ASR_ECTF_UnicodeSupport, if true, indicates that the Recognizer supports all Unicode characters as input.

Of course, support for Unicode does not mean that all languages experessible in Unicode are supported;  it simply means that the Recongizer will not be confused by Unicode characters. For example, an English language Recognizer may reject a Chinese character as being out-of-vocabulary.

Note that the output of the Recognizer is always in Unicode format.



�autonumlgl �12.6.�	Resource Behavioral Overview

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �20�:  Speech Recognizer state diagram

�autonumlgl �12.6.1.�	Resource States�xe "automatic speech recognition:resource states"�

This section presents the states of the Automatic Speech Recognition Resource, the Recognizer.  Two different sets of states will be presented here: the set of states that deal with Recognition, and the set that deals with Training.  Some vendors may provide a single Context that allows both the Recognition states and the Training states to be present simultaneously. Other vendors may require that a different Context be loaded to provide these different sets.

�autonumlgl �12.6.2.�	Recognition States

�xe "automatic speech recognition:recognition states"�� REF _Ref339768518 \* MERGEFORMAT �Figure 20� shows the state diagram of a Recognizer resource set up to perform speech recognition.  The three possible states are IDLE, RECOGNIZING and RECOGNITION COMPLETE.

IDLE is the initial state.  When the ASR resource is attached to an S.100 Group configured for Recognition, it is in the IDLE state.  In this state, the Recognizer is not performing recognition.  Depending on the technology provided by the vendor, this IDLE state may be the same IDLE state described in Section 3.2.

RECOGNIZING is an active state.  The Recognizer is performing speech recognition.  Intermediate results of the recognition may be available in this state.

RECOGNITION COMPLETE is reached when the Recognizer has finished its current ASR tasks.  ASR results are available.  To start recognition, issue the �xe "functions:CTasr_StartRecognition()"�CTasr_StartRecognition() command.  This command will cause a transition from any state to the RECOGNIZING state.  The CTasr_StartRecognition() may therefore be issued even in the RECOGNIZING state.

Entry to the RECOGNIZING state via the �xe "functions:StartRecognition()"�_StartRecognition() will destroy any previous recognition result stored on the resource (regardless of the previous state – even a transition from RECOGNIZING to RECOGNIZING using the CTasr_StartRecognition() function will destroy previous data).  The Recognizer resource monitors the received audio data path and performs recognition.  

In the RECOGNIZING state, results may be compiled in intermediate form and be available to the application, depending on the technology available.  For example, a continuous speech recognizer may have partial results available even though recognition is not complete; the application is notified through the ASR_ECTF_IntermediateResults event.  These results may be retrieved using the �xe "functions:CTasr_RetrieveRecognition()"�CTasr_RetrieveRecognition() function; the function, when used this way, does not destroy recognition results. 

The application may distinguish between partial results and final results: final results are obtained from the Recognizer when it is in the RECOGNITION COMPLETE state, i.e., after the ASR_ECTF_StartRecognition event.  The recognition may complete for several reasons: e.g., a specific word or number of words is recognized, a limit (e.g., silence) is reached, or the Recognizer receives a command to stop. 

Once the recognition task set by the �xe "functions:CTasr_StartRecognition()"�CTasr_StartRecognition() has been completed, the Recognizer enters the RECOGNITION COMPLETE state, and issues the ASR_ECTF_StartRecognition event.  In synchronous mode, the CTasr_StartRecognition() will now have completed.  

The Recognizer has results available that may be retrieved using the CTasr_RetrieveRecognition() function.  When results are retrieved from the Recognizer, the resource enters the IDLE state and issues the ASR_ECTF_RetrieveRecognition event.  In synchronous mode, the �xe "functions:CTasr_RetrieveRecognition()"�CTasr_RetrieveRecognition() completes. Once the Recognizer enters the IDLE state, recognition results may be destroyed by the Recognizer, and subsequent calls of CTasr_RetrieveRecognition() may yield unpredictable results.

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �21�:  Training state diagram

�xe "automatic speech recognition:training"��xe "word training"�� REF _Ref339369355 \* MERGEFORMAT �Figure 21� shows the state diagram of a Recognizer resource set up to perform training.  The four possible states are IDLE, TRAINING, DATA AVAILABLE, and MODELING. 

IDLE is the initial state.  When the ASR resource is attached to an S.100 Group configured for Training, it is in the IDLE state.  In this state, the Recognizer is not performing training.  Depending on the technology provided by the vendor, this IDLE state may be the same IDLE state described in Section 3.1.

TRAINING is an active state.  The Recognizer is performing training on speech. 

DATA AVAILABLE is reached when the Recognizer has finished its current training task. However, multiple training sessions may be necessary to provide enough data to create a valid Context for the Recognizer.

MODELING is reached when the Recognizer is instructed to transform the data available into a valid Context for speech recognition.

To create a new or modified Context for the Recognizer:

The Application will issue a CTasr_WordTrain() command to the Recognizer while it is in the IDLE state.  The Recognizer enters the TRAINING state.  

In TRAINING, the recognizer monitors the audio path or reads the appropriate data to create a Word.  Upon completion, the Recognizer enters the DATA AVAILABLE state.  

If enough data have been collected, the Recognizer will issue an ASR_ECTF_WordModel event when leaving the Training State.  Otherwise, it will issue an ASR_ECTF_WordTrain event.

In DATA AVAILABLE, if more data is required (i.e., the ASR_ECTF_WordTrain event was sent) then the Application issues a �xe "functions:CTasr_WordTrain()"�CTasr_WordTrain() command and returns the Recognizer to the TRAINING state for another round of training. 

Once sufficient data are available (i.e., the ASR_ECTF_WordModel event is sent), the application issues the �xe "functions:CTasr_WordCommitt()"�CTasr_WordCommit() function to add the Word to the Context (or modify the existing Word).  The Recognizer enters the MODELING state, and remains in the state until this process ends.

When the Recognizer has finished adding or modifying the Word, the Recognizer automatically exits the MODELING state, issues the ASR_ECTF_WordCommit event, and enters the IDLE state.

Some Recognizers support automatic training: they cycle between TRAINING and DATA AVAILABLE autonomously until sufficient training has occurred.  When set for automatic training, the ASR_ECTF_WordTrain and ASR_ECTF_WordModel events are issued as described above, but the application need not issue any additional function calls until the ASR_ECTF_WordModel event indicates that all training is complete. 



�autonumlgl �12.6.3.�	Audio Prompts

Some Recognizer Resources are able to generate an audio prompt (a beep) when recognition is supposed to begin, and possibly to cancel the beep from the incoming speech signal.  This feature is controlled by a parameter ASR_ECTF_Beep, which, when set to CT_boolTRUE, tells the Recognizer to generate a beep upon exiting IDLE state for either RECOGNIZING or TRAINING states. Beep cancellation, if available, is controlled by a parameter ASR_ECTF_BeepCancel, which, if set to CT_boolTRUE, will cancel the beep.

Recognizers lacking this resource indicate this by returning the value CT_boolFALSE when the capability ASR_ECTF_Beep is queried.  For such Resources, the feature may be simulated by setting up an RTC with a signal generator resource, where the Condition is SG_ECTF_SendSignal and the Action is ASR_ECTF_Start (see next section on Runtime Control).

�autonumlgl �12.6.4.�	Barge In

Some ASR resources have the ability to detect barge in (i.e., the ability to detect a DTMF tone, a voice, or other audio input intruding on an input signal). This feature is controlled by a parameter ASR_ECTF_BargeInEnable, which is set to CT_boolTRUE if the feature is enabled. When enabled, the RTC condition ASR_ECTF_BargeIn will be raised when the resource detects barge in.



�autonumlgl �12.7.�	Runtime Control

�autonumlgl �12.7.1.�	Recognized Actions

The following table lists 

the control signals that may be received from the external Resources, affecting a recognizer.  

the associated events generated by the recognizer and sent to the application

Any S.100-compliant Recognizer may have the capability of recognizing these controls; however a specific KVSet identifies if a specific Recognizer has these capabilities or not, as detailed in the following chapter discussing parameters. 

KVSet naming conventions for externally detected controls are:

ASR_ECTF_<ControlKey>

For additional vendor-specific controls, the naming convention will be:

ASR_ <Vendor Name>_<ControlKey>

where <ControlKey> is taken from the list below, and <Vendor Key> is the name registered to the vendor by the S.100 Naming Authority.



Table � seq table �81�:  ASR Resource Runtime Control Actions



Control Key�Definition�Event Generated��Stop�Stop recognizing�ASR_ECTF_RetrieveRecognition��Start�Start the paused recognition�ASR_ECTF_Start���autonumlgl �12.7.2.�	Recognized Conditions

The following table lists the internal conditions identified by an ASR and usable for triggering run time controls of another resource, e.g., for starting or stopping a speech synthesizer.

Naming convention:	ASR_ECTF_<ConditionKey>

For additional vendor-specific controls, the naming convention will be:

ASR_<Vendor Name>_<ConditionKey> 

where <ConditionKey> is taken from the list below, and <Vendor Key> is the name registered to the vendor by the ECTF Naming Authority.



Table � seq table �82�:  ASR Resource Runtime Control Conditions



Condition Key�Definition��SpeechDetected�Speech has been detected��SpecificUtterance�A specifically defined utterance was detected.��StartRecognitionComplete�Recognition has terminated normally (this does not signify that a valid utterance was found)��TrainWordComplete�Word training complete��ValidUtterance�A valid utterance has been detected��Silence�Silence has been detected��InvalidUtterance�An invalid utterance has been detected��BargeIn�A barge in condition has been detected.��

�autonumlgl �12.8.�	Parameters

�autonumlgl �12.8.1.�	Introduction

An ASR resource is characterized by constant properties and by variable settings.  See Chapter 3 for a complete discussion of how to use parameter functions to discover which properties are present on the Recognizer, the range of permissible settings, and how to set the parameters.

Properties can allow fine control of a Resource, for example by specifying how long the system will wait for an utterance.  These variables can allow a different behavior of the resource, by proper setting of  flags.

Parameters and their ranges can be correctly accessed when the recognizer state is idle;  otherwise the error CT_errorBUSY will be issued.

Naming convention:	ASR_ECTF_<ParameterName>

For additional vendor-specific controls, the naming convention will be:

ASR_<Vendor Name>_<ParameterName> 

where <ConditionKey> is taken from the list below, and <Vendor Key> is the name registered to the vendor by the ECTF Naming Authority.

�autonumlgl �12.8.2.�	ASR Resource Parameter Categories�xe "automatic speech recognition:resource parameters"�

Vendor tag parameters�xe "vendor tag parameters"��xe "automatic speech recognition:vendor tag parameters"� indicate a non-faulty resource.  When asked for their values, they identify the vendor, the program, the version and the data.  Since these are read-only parameters, an attempt to set these parameters will generate the error CT_errorBADPARM.  Additional non-S.100 parameters can be vendor specific; e.g., a board identification number.

Technology identification parameters�xe "technology identification parameters"��xe "automatic speech recognition:technology identification parameters"� indicate if specific functionalities are potentially supported by the resource.  Actual values identify the specific setting at a given time; some functionalities (e.g. adaptation) can be enabled or disabled by the application. 

Context control parameters�xe "context control parameters"��xe "automatic speech recognition:context control parameters"� allow identification of the ranges and actual values of active and loaded words and of active and loaded word lists.  These data can be used for quickly verifying if a specific recognizer implementation can really be loaded with the application Contexts. Other parameters allow applications to selectively enable or mask specific words and specific vocabularies; for efficiency reasons, the Resource is often initially loaded with all the words required by the application, but only a subset is active at any given time.

Speech input control parameters�xe "speech input control parameters"��xe "automatic speech recognition:speech input control parameters"� control speech input (and end-of-input) conditions.

Output control parameters�xe "output control parameters"��xe "automatic speech recognition:output control parameters"� allow the application program to define the format of the results and the number of best identified hypotheses.  

Output parameters�xe "output parameters"��xe "automatic speech recognition:output parameters"� convey the results of the Recognizer.

Training control parameters�xe "training control parameters"��xe "automatic speech recognition:training control parameters"� allow automatic control of the training iterations.  For example, some implementations allow the application to define the number of training repetitions for each word.  In such cases the application program need only wait for the event signifying the end of training.

Speech buffer control parameters�xe "speech buffer control parameters"��xe "automatic speech recognition:speech buffer control parameters"� allow the application to save the last detected utterance in a resource internal buffer and reuse it as input.

RTC control parameters�xe "RTC control parameters"��xe "automatic speech recognition:RTC control parameters"� specify parameters for the Recognizer considered as an RTC detector or  generator object.  For example, these parameters allow for recognition in “paused” mode,  starting after a prompt is played.

The descriptions are phrased to describe the CT_boolTRUE case.  For example, if the result for ASR_ECTF_SpeechRecognition is CT_boolFALSE, then speech recognition is not supported.

Table � seq table �83�:  ASR Resource Vendor-Related Parameters�xe "automatic speech recognition:vendor parameters"�



Name�Data Type�Description��ASR_ECTF_Vendor�CTbool�Vendor Name��ASR_ECTF_Program�CTbool�Program Name��ASR_ECTF_Version�CTbool�Version Number��ASR_ECTF_Date�CTbool�Version Date��

Table � seq table �84�:  ASR Resource Technology Identification Parameters�xe "automatic speech recognition:technology identification parameters"�



Name�Data Type�Description��ASR_ECTF_SpeechRecognition�CTbool�speech recognition active��ASR_ECTF_Verify�CTbool �speaker verification active��ASR_ECTF_Identify�CTbool�speaker identification active��ASR_ECTF_SpeakerDependent�CTbool  ��speaker dependent recognition active��ASR_ECTF_SpeakerIndependent�CTbool�speaker independent recognition active��ASR_ECTF_FullWords�CTbool�full words model active��ASR_ECTF_Phonetic�CTbool�phonetic models active��ASR_ECTF_AsciiTranscription�CTbool�phonetic models from ASCII transcription active��ASR_ECTF_PhoneticTranscription�CTbool�phonetic transcription for phonetic models active��ASR_ECTF_UnicodeSupport�CTbool�If CT_boolTRUE, support for Unicode input is active��

Table � seq table �85�:  ASR Resource Context Control Parameters�xe "automatic speech recognition:context control parameters"�



Name�Data Type�Definition��ASR_ECTF_Adaptation�CTbool �speaker adaptation active��ASR_ECTF_ActiveWords�CTuint� number of active words��ASR_ECTF_LoadedWords�CTint�number of loaded words��ASR_ECTF_MaskedWords�CTint�number of masked words��ASR_ECTF_ActiveWordList�CTstring[]�list of active words��ASR_ECTF_LoadedWordList�CTstring[]�list of loaded words��ASR_ECTF_MaskedWordList�CTstring[]� list of masked words��ASR_ECTF_ActiveContexts�CTuint� number of active Contexts��ASR_ECTF_LoadedContexts�CTuint� number of loaded Contexts��ASR_ECTF_MaskedContexts�CTuint� number of masked Contexts��ASR_ECTF_ActiveContextList�CTstring[]� list of active Contexts��ASR_ECTF_LoadedContextList�CTstring[]� list of loaded Contexts��ASR_ECTF_MaskedContextList�CTstring[]� list of masked Contexts��

Table � seq table �86�:  ASR Resource Speech Input Control Parameters�xe "automatic speech recognition:speech input control parameters"�



Name�Data Type�Definition��ASR_ECTF_ MaximumTimeWindow�CTuint�maximum time window (in ms).  At the end of that time the recognition terminates.��ASR_ECTF_EnergyFloor�CTint�Energy level x 1000, in dBm, which discriminates between speech and silence. For example, -34.5 dBm is represented as -34500.��ASR_ECTF_InitialTimeout�CTuint�Initial silence timeout in ms.  If no utterance is detected  above the energy floor in this period, recognition is terminated and the Recognizer will notify the application that silence has been detected.��ASR_ECTF_FinalTimeout�CTuint�Silence time in ms after utterance to indicate completion of the recognition.��ASR_ECTF_BeepCancel�CTbool�Beep cancellation active.��ASR_ECTF_BargeInActive�CTbool�Barge-In detection active��ASR_ECTF_Beep�CTbool� Recognizer will play a beep when entering the RECOGNIZING or TRAINING state��

Table � seq table �87�:  ASR Resource Output Control Parameters�xe "automatic speech recognition:output control parameters"�



Name�Data Type�Definition��ASR_ECTF_TextOutput�CTbool�Output results are provided as human-readable text.��ASR_ECTF_PhoneticOutput�CTbool�output results are provided as a phonetic transcription��ASR_ECTF_TranscribeWarnings�CTbool�warning messages are added to the recognition results.��ASR_ECTF_TopChoices�CTuint�Number of alternative results returned��ASR_ECTF_UnicodeOutput�CTBool�If CT_boolTRUE, the resource will send all text as Unicode output��

Table � seq table �88�:  ASR Resource Output Parameters�xe "automatic speech recognition:output parameters"�



Name�Data Type�Description��ASR_ECTF_Results�CTkvs_ct�Key value set which contains recognition results from CTasr_RetrieveRecognition��ASR_ECTF_ResultType�CTuint�Indicates whether results are final: one of CTasr_uintINTERMEDIATE, CTasr_uintFINAL��ASR_ECTF_ResultSummary�CTuint�Indicates if recognition was successful or not: CTasr_uintSUCCESS, CTasr_uintSILENCE, CTasr_uintREJECTED.  A Recognizer that cannot detect a state may return CT_NULL.��ASR_ECTF_ResultReason�CTuint�Indicates reason for ASR termination, i.e.,  CTasr_uintSILENCETIMEOUT or CTasr_uintMAXTIMEOUT.��ASR_ECTF_NumberResults�CTuint�Number of results returned. Used to find lengths of arrays.��ASR_ECTF_ShortResult�CTstring[]�Results from Recognizer; contains only the exact results expected from the grammar specification.��ASR_ECTF_ResultScore�CTint[]�CTint value indicating the confidence the Recognizer has with the corresponding result. One array element is returned for each result string.  The range is from 0 to 1000, with 1000 meaning perfect confidence and 0 total disbelief.��ASR_ECTF_LongResult�CTstring[]�Results from Recognizer; contains complete information about utterance��ASR_ECTF_ContextName�CTstring�Name of Context; used in various Events��ASR_ECTF_WordName�CTstring�Name of Word in Context; used in various Events��ASR_ECTF_TrainingResults�CTuint�Denotes success, failure of training; values CTasr_uintSUCCESS, CTasr_uintSILENCE, CTasr_uintUNSUCCESSFUL, CTasr_uintCOMPLETE.��

Table � seq table �89�:  ASR Resource Training Control Parameters�xe "automatic speech recognition:training control parameters"�



Name�Data Type�Definition��ASR_ECTF_AutomaticTraining�CTbool�Automatic training active��ASR_ECTF_NumberRepetitions�CTuint�Number of repetitions  to perform in a training loop.��ASR_ECTF_EnableValidUtterance�CTbool� Resource will generate the ASR_ECTF_ValidUtterance event during training if training word is valid.��ASR_ECTF_EnableInvalidUtterance�CTbool�Resource  will generate the ASR_ECTF_InvalidUtterance event during training if training word is invalid, i.e., if collision with existing word on list is detected.��

Table � seq table �90�:  ASR Resource Speech Buffer Control Parameters�xe "automatic speech recognition:speech buffer control parameters"�



Name�Data Type�Definition��ASR_ECTF_StoreInput�CTbool�Acquired utterance is saved in a resource internal buffer for reuse��ASR_ECTF_PlayInput�CTbool�ASR internal buffer is reused as a new input��

Table � seq table �91�:  ASR Resource Runtime Control Action Parameters�xe "automatic speech recognition:runtime control action parameters"�



Name�Data Type�Definition��ASR_ECTF_ActionStop�CTbool� RTC stop action enabled��ASR_ECTF_ActionStart�CTbool�Recognizer starts as “paused,” and is waiting for RTC START action.��ASR_ECTF_ ConditionSpeechDetected�CTbool� RTC SpeechDetected condition is enabled; this trigger will arise as soon as nonsilence is detected.��ASR_ECTF_ ConditionSpecificUtterance�CTstring[]� RTC SpecifcUtterance condition is enabled; this trigger will arise as soon as an active word is detected.��ASR_ECTF_ ConditionValidUtterance�CTbool� RTC ValidUtterance condition enabled; sent when valid word is recognized during training.��ASR_ECTF_ ConditionInvalidUtterance�CTbool� RTC InvalidUtterance condition enabled; sent when invalid utterance is detected during training��ASR_ECTF_ ConditionWordTrainComplete�CTbool�RTC TrainWordComplete condition enabled; sent when Word training is complete.���autonumlgl �12.9.�	Data Definitions

�autonumlgl �12.9.1.�	Error Codes

All errors listed below are of type CTerror. Only ASR specific error codes are listed.



Table � seq table �92�:  ASR Resource Error Codes



Error Code Name�Description��CTasr_errorBADCONTEXT�Invalid Context name��CTasr_errorINCORRECTCONTEXT�Context does not work with this Recognizer��CTasr_errorBADCONTAINER� Invalid Context Container��CTasr_errorEXISTS�Word already exists��CTasr_errorNOEXISTS�Word does not exist��CTasr_errorNOTSUPPORTED�Recognizer does not support function call���autonumlgl �12.9.2.�	Miscellaneous Constants



Table � seq table �93�:  ASR Resource Miscellaneous Constants



Constant Name�Description��CTasr_boolTORESOURCE�Send Context from Container to Resource��CTasr_boolFROMRESOURCE�Send Context from Resource to Container��CTasr_uintSUCCESS�Recognizer determined utterance��CTasr_uintCOMPLETE�Training is complete��CTasr_uintSILENCE�Recognizer heard no utterance��CTasr_uintUNSUCCESSFUL�Training was unsuccessful due to collision��CTasr_uintREJECTED�Recognizer could not recognize utterance��CTasr_uintINITIALTIMEOUT�Recognizer heard no utterance during initial part of recognition window��CTasr_uintMAXTIMEOUT�Recognizer could not determine utterance inside  recognition window��CTasr_uintSPEECH�Recognizer trains on utterance��CTasr_uintTEXT�Recognizer trains on textual representation of utterance��CTasr_uintPHONETIC�Recognizer trains on phonetic representation of utterance��

�autonumlgl �12.10.�	ASR Events

The list of Events, below, contains just the Keys that are unique to the Event in question.  A list of keys that apply to any event may be found in Section 5.4.3.

�autonumlgl �12.10.1.�	Unsolicited ASR Events�xe "event:ASR unsolicited events"��xe "automatic speechrecognition:unsolicited events"�

This section lists Events generated by the Resource that are not generated as a specific response to an ASR function. 



ASR_ECTF_RecognitionStopped�Recognition has Stopped due to RTC Event��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�The possible Qualifiers are described below��

ASR_ECTF_RecognitionStarted�Paused Recognition has begun due to RTC Event��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�The possible Qualifiers are described below��

ASR_ECTF_ValidUtterance�Valid Utterance During Training��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�The possible Qualifiers are described below��

ASR_ECTF_InvalidUtterance�Invalid Utterance During Training��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�The possible Qualifiers are described below��

ASR_ECTF_IntermediateResultsReady�Intermediate ASR Results Available��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�The possible Qualifiers are described below��

�autonumlgl �12.10.2.�	Completion Events

The following events are expected as responses to function calls.



Event Name�Description��ASR_ECTF_StartRecognition�ASR recognition has completed.  Final ASR Results available��ASR_ECTF_RetrieveRecogntion�ASR results have been retrieved from Recognizer.��ASR_ECTF_WordTrain,

ASR_ECTF_WordModel�ASR word training in progress, or ASR Word training has completed. Either event may be returned from a CTasr_WordTrain() call.��ASR_ECTF_WordCommit�Recognizer has committed Word to Context���autonumlgl �12.10.3.�	Event Qualifier Values

The following cause codes are returned as keys in the tranEvent object.  The following table list the values an ASR Resource can return in the Session_ECTF_Qualifier standard event key.

Table � seq table �94�:  ASR Resource Event Qualifier Values



Qualifier�Type�Description��ASR_ECTF_Standard�CTuint�Normal termination��ASR_ECTF_RTC�CTuint�Event caused by an RTC trigger��ASR_ECTF_Stop�CTuint�Event caused by a CTgrp_Stop function����autonumlgl �12.11.�	ASR Function Definitions



CTasr_ContextCopy�Copy a Context between Container and Resource��Name:�CTstatus CTasr_ContextCopy(ConContext, ResContext, Direction, Group, ParmList, TranInfo, Mode)��Input:�CTstring�ConContext�Name of Container Context ���CTstring�ResContext�Name of Resource Context���CTbool�Direction�Direction of copy���CTgrp_ct�Group�Group handle��Output:�None����Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function is used to copy Contexts from a Container to a Resource, and from a Resource to a Container.  The CTbool value direction specifies whether the copy is from a container to a resource (CTasr_boolTORESOURCE) or from a resource to a container (CTasr_boolFROMRESOURCE).  

This is a nondestructive copy; the source copy of the Context is unaffected.  If a Context of the same name already exists at the destination, it will be overwritten and lost.  If the destination is a container, a new Context Object will be created to accommodate the Context if necessary.  If the destination is an ASR Resource, and 

the Resource currently has a Context, and the Resource does not support multiple Contexts or

the Resource has no room for this Context 

the copy will fail.

In such cases the application must take corrective action, e.g., free up room on the ASR Resource by performing a CTasr_ContextRemove().

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_ContextCopy�Context copied��Event specific keys�Value�Description��ASR_ECTF_Error�CTerror�Error codes as listed in next section��Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CTasr_errorBADCONTEXT	(	Invalid Context name

CTasr_errorINCORRECTCONTEXT	( Context does not work with this Recognizer

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out



CTasr_ContextCreate�	Create a new Context��Name:�CTstatus CTasr_ContextCreate(ContextName, Group, ParmList, TranInfo, Mode)��Input:�CTstring�ContextName�Name of Context to create���CTgrp_ct�Group�Group object��Output:�None����Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to create a new Context on the ASR Resource.  The ASR Resource of the Group must support Context modification.

Any parameter -- including those that are normally read only and cannot be written by the application -- may be set during the time of creation by sending the appropriate KVSet pair. Parameters which are not specified will take as default values the current Recognizer settings.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_ContextCreate�Context Created��Event specific keys�Value�Description��ASR_ECTF_Error�CTerror�Error codes as listed in next section��Cautions

None

Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CT_errorBADPARM	(	Invalid Parameter in Function Call

CTasr_errorBADCONTEXT	(	Invalid Context

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTasr_ContextList�List Contexts on a Resource��Name:�CTstatus CTasr_ContextList(Group, Context, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object��Output:�CTkvs_ct*�Contexts�KVSet with list of Contexts��Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function lists Contexts resident on a Resource.  The function returns in the completion event a KVPair whose Key is ASR_Cont_Contexts and whose value is a KVSet with KVPairs described below. If the output argument Contexts is not NULL, its return value is a handle of a KVSet containing the KVPairs described below.

The KVPairs returned include:

ASR_ECTF_LoadedContextList[]", an array of CTstring that gives the name of the Contexts.  The size of this array, i.e., the number of Contexts, is returned in ASR_ECTF_LoadedContexts

ASR_ECTF_ActiveContextList[]", an array of CTstring that gives the name of active Contexts.  The size of this array is returned in ASR_ECTF_ActiveContexts.

ASR_ECTF_MaskedContextList[]", an array of CTstring that gives the name of masked Contexts.  The size of this array is returned in ASR_ECTF_MaskedContexts.

Similarly, individual words in a Context may be made active, masked, or enabled.  Since a word is found in a particular Context, the Context name must be given along with the word name, using the format "ContextName:wordName." "ContextName" may contain colons.

ASR_ECTF_ActiveWordList[]", an array of CTstring that gives the names of active Words.  The size of this array is returned in ASR_ECTF_ActiveWords.

ASR_ECTF_MaskedWordList[]", an array of CTstring that gives the name of masked Words.  The size of this array is returned in ASR_ECTF_MaskedWords.

ASR_ECTF_LoadedWordList[]", an array of CTstring that gives the name of enabled Words.  The size of this array is returned in ASR_ECTF_LoadedWords.

The maximum permissible number of Contexts that may be resident on the resource at one time can be found using the CTgrp_GetParameterNames() function and querying the parameter ASR_ECTF_LoadedContexts.  The maximum number of active Contexts may be found similarly by querying ASR_ECTF_ActiveContexts.	

These lists are set using CTgrp_SetParameters() or during CTasr_StartRecognition().

Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_ContextList

�Context List results ready��Event specific keys�Value�Description��ASR_ECTF_Contexts�CTkvs_ct�Contains KVPairs as noted above:

ASR_ECTF_LoadedContextList [CTstring[] ], ASR_ECTF_LoadedContexts [CTuint], ASR_ECTF_ActiveContextLists [CTstring[] ], ASR_ECTF_ActiveContexts [CTuint], ASR_ECTF_MaskedContextList [CTstring[] ], ASR_ECTF_MaskedContexts [CTuint], ASR_ECTF_ActiveWordList [CTstring[] ], ASR_ECTF_ActiveWords [CTuint], ASR_ECTF_MaskedWordList [CTstring[] ], ASR_ECTF_MaskedWords [CTuint], ASR_ECTF_LoadedWordList [CTstring[] ], ASR_ECTF_LoadedWords [CTuint]��ASR_ECTF_Error�CTerror�error codes as listed in next section��Cautions

The output parameter Contexts is not valid until the completion event corresponding to the API call arrives.

Errors

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out 



CTasr_ContextRemove�Remove a Context��Name:�CTstatus CTasr_ContextRemove(ContextName, Group, ParmList, TranInfo, Mode)��Input:�CTstring�ContextName�Name of Context to remove���CTgrp_ct�Group�Group object��Output:�None����Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information  struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to remove an existing Context from an ASR Resource.  The Context which is removed is lost. 

To preserve a Context, copy it to a Container using the CTasr_ContextCopy() function.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_ContextRemove�Context removed from Recognizer��Event specific keys�Value�Description��ASR_ECTF_ContextName�CTstring�Context name that was removed��ASR_ECTF_Error�CTerror�error codes as listed in next section��Cautions

None

Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CTasr_errorBADCONTEXT	(	Invalid Context name

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTasr_RetrieveRecognition�Makes results available to application��Name:�CTstatus CTasr_RetrieveRecognition(Group, ResultType, Results, RTC, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group���CTuint�ResultType�Intermediate/Final���CTkvs_ct�ParmList�Parameter list��Output:�CTkvs_ct*�Results�Results KVSet��Standard:�CTkvs_ct�RTC�Runtime control���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function puts results from the Recognizer into Key Value Sets accessible to the application.  The ResultType (values of CTasr_uintINTERMEDIATE or CTasr_uintFINAL) indicates where intermediate results or final results are sought.

If ResultType is set to CTasr_uintFINAL, CTasr_RetrieveRecognition() will return all results determined since the CTasr_StartRecognition() which began this recognition.

If ResultType is set to CTasr_uintINTERMEDIATE, the results will be:

the results since the CTasr_StartRecognition() which began this recognition, if this is the first CTasr_RetrieveRecognition() issued since then; or

the results that have been determined since the previous CTasr_RetrieveRecognition(), if CTasr_RetrieveRecognition() has already been issued before (since the CTasr_StartRecognition() which began this recognition).

In other words, CTasr_RetrieveRecognition() with ResultType set to CTasr_uintINTERMEDIATE returns fragments of the recognition results.  These fragments are not cumulative; they are lost after each CTasr_RetrieveRecognition().

All results of the recognition are returned in the completion event via a KV pair whose Key is ASR_ECTF_Results and whose value is another KVSet; this KV Set  contains the KVPairs described below. If the output argument Results is not NULL, its return value will be a handle to a KVSet containing KVPairs as described below.

ASR_ECTF_Results will include the following:

ASR_ECTF_ResultType, to indicate intermediate or final results.

ASR_ECTF_ResultSummary: a synopsis of the recognition action: whether a keyword detected, CTasr_uintSUCCESS;  only silence, CTasr_uintSILENCE; or the utterance could not be interpreted, CTasr_uintREJECTED. In the latter cases the corresponding string  in ASR_ECTF_ShortResult[] will contain the strings “ECTF_SILENCE” and “ECTF_REJECTED,” respectively.  A Recognizer does not necessarily distinguish between these state; e.g. a Recognizer that uses “forced decision” will never return CTasr_uintREJECTED.  Further information may be found in the KVP ASR_ECTF_ResultReason, which has possible values of CTasr_uintINITIALTIMEOUT and CTasr_uintMAXTIMEOUT.

The KV pair ASR_ECTF_NumberResults is the number of results returned.

ASR_ECTF_ShortResult[] - an array of CTstring, each element containing the ASCII representation of the utterance.  The array begins with element 0, which is the most likely candidate for recognition. 

The result is not necessarily a transcription of the utterance; it will contain the “values,” if any, that were described in the grammar by the application in the Phrase List or SCRL grammar.  For example, if the Phrase list requests “1” to be returned no matter what language “yes” was spoken in, ASR_ECTF_ShortResult[] will contain the string “1” in the appropriate place in its list.  

As another example, consider a speaker dependent system where an arbitrary voice label is associated with a telephone number.  Application developers will probably use the CTasr_WordTrain() function to associate the telephone number with the voice label, and therefore when the user utters the words "Call Mom," the string result returned will "2022242584."

Ancillary information may be returned in the CTstring array ASR_ECTF_LongResult[].  This information is set off from the values of the utterance by a leading brace "{" and a trailing brace "}" , with whitespace between the braces and any surrounding characters.  The type of information is given first, followed by whitespace, a colon, whitespace, and the information.  

For example: a system returns "Yes { language : English }" to signify that the utterance was interpreted as "Yes," and the language spoken was English. Other information might be the Context which returned the result (in a multi-Context Recognizer).  S.100 defines information types only for speaker verification and identification, as noted below. Each ancillary information item must be returned within its own pair of braces.  Ancillary information alone may be returned as a result.

For speaker verification or speaker identification, we recommend that ASR_ECTF_LongResult contain the utterance is given as a string (if it is known), and the speaker's identity is given within braces.  E.g., "Yes {  ECTF_Speaker : Rich }", or "KEYWORD { ECTF_Speaker : Terri }", or "KEYWORD { ECTF_Speaker : UNKNOWN }". Note that the actual string “ECTF_Speaker” appears, not a CTstring constant.

ASR_ECTF_ResultScore[] -  CTint value indicating the confidence the Recognizer has with the corresponding result. One array element is returned for each result string.  The range is from 0 to 1000, with 1000 meaning perfect confidence and 0 total disbelief.

This function may proceed synchronously or asynchronously, depending on the setting of the mode parameter.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_RetrieveRecognition�Results retrieved and ready��Event specific keys�Value�Description��ASR_ECTF_Results�CTkvs_ct�Contains KVPairs 

ASR_ECTF_ResultType (CTuint),

ASR_ECTF_ResultSummary (CTuint),

ASR_ECTF_ResultReason (CTuint),

ASR_ECTF_NumberResults (CTuint), 

ASR_ECTF_ShortResult[] (CTstring[]),

ASR_ECTF_ResultScore[] (CTint []),

ASR_ECTF_LongResult[] (CTstring[])��ASR_ECTF_Error�CTerror�error codes as listed in next section��Cautions

The output argument Results is not valid until the completion event corresponding to the API call arrives.

Errors

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADRTC	(	Invalid Run Time Control object

CT_errorBADGROUP	(	Invalid Group

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out



CTasr_StartRecognition�Starts speech recognition��Name:�CTstatus CTasr_StartRecognition(Group, RTC, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group��Output:�None����Standard:�CTkvs_ct�RTC�Runtime control KVSet���CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function starts speech recognition on the ASR resource.  The application can set parameters dictating how recognition proceeds.  The application uses parameters and RTC to control the speech recognition process.  The Recognizer has many parameters that affect the behavior of the recognition algorithm.

Parameters set using this function call will be valid only for the duration of the recognition triggered by the function call.  To set parameters for each function call, use the CTgrp_SetParameters() function. Recognition may proceed either synchronously or asynchronously, depending on the setting of the mode parameter.

Selecting Contexts

Since multiple Contexts may be resident on the Recognizer, two arrays of strings may be sent as part of the ParmList KVSet to determine which Contexts are to be used for recognition. Only one of these two may be sent; the application developer may choose to restrict the list by either activating Contexts or masking them, but not both.

ASR_ECTF_ActiveContextList[]", an array of CTstring that gives the names of active Contexts.  The size of this array is set using  ASR_ECTF_ActiveContexts. 

ASR_ECTF_MaskedContextList[]", an array of CTstring that gives the name of masked Contexts.  The size of this array is set using  ASR_ECTF_MaskedContexts. 

These lists may also be set using the CTgrp_SetParameters() function. Use the CTgrp_GetParameterNames() function to query the parameter  ASR_ECTF_ActiveContexts to discover the maximum permissible number of Contexts which may be simultaneously active. 

Likewise, the other parameters listed above may be queried for their maximum and minimum values. 

Selecting Words

Similarly, individual words in a Context may be made active or masked.  Since a word is found in a particular Context, the Context name must be given along with the word name, using the format "ContextName:wordName."  The application must send just one of these arrays; the choice is between limiting Words through making specific ones active, or through masking specific words.

"ContextName" may itself contain colons (“:”).

The lists which may be set include:

ASR_ECTF_ActiveWordList[]", an array of CTstring that gives the names of active Words.  The size of this array is set using ASR_ECTF_ActiveWords.

ASR_ECTF_MaskedWordList[]", an array of CTstring that gives the name of masked Words.  The size of this array is set using ASR_ECTF_MaskedWords. 

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_StartRecognition�ASR recognition completed��Event specific keys�Value�Description��ASR_ECTF_Error�CTerror�error codes as listed in next section��Cautions

None

Errors

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADRTC	(	Invalid Run Time Control object

CT_errorBADGROUP	(	Invalid Group object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out



CTasr_WordCommit�Commit a Word into a Context��Name:�CTstatus CTasr_WordCommit ( WordName, ContextName, Group, ParmList,  TranInfo, Mode)��Input:�CTstring�WordName�Name of word to commit���CTstring�ContextName�Context of word���CTgrp_ct�Group�Group object��Output:�None����Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function commits a Word into a Context, signifying that sufficient information has been collected and that the Context may be permanently modified based on the updated training information. 

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_WordCommit�Word committed to context��Event specific keys�Value�Description��ASR_ECTF_WordName�CTstring�word being committed��ASR_ECTF_ContextName�CTstring�Context in which word was committed��ASR_ECTF_Error�CTerror�error codes as listed in next section��Cautions

None



Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CTasr_errorBADWORD	(	Invalid Word

CTasr_errorBADCONTEXT	(	Invalid Context name

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTasr_WordCreate�Create a new Word��Name:�CTstatus CTasr_WordCreate ( WordName, WordString, ContextName, Group, ParmList, TranInfo, Mode)��Input:�CTstring�WordName�Name of word to create���CTstring�WordString�String associated with Word���CTstring�ContextName�Name of the Context in which Word will reside���CTgrp_ct�Group�Group object��Output:�None����Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to create a new Word within a Context resident on the ASR Resource.  The Word has a name, specified by WordName.  When an utterance corresponding to this Word is detected, the recognizer will return WordString in the value of the KVPair whose Key is ASR_ECTF_ShortResult.  The ASR Resource of the Group must support Context modification. 

Note that the WordString is not necessarily an exact transcription of the utterance.  In a scenario where arbitrary voice labels are associated with a telephone number, a developer may wish to use the telephone number as the return string.  In the case of a speaker verification system using arbitrary passwords, the developer might use the string "PASSWORD."

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_WordCreate�Word Created��Event specific keys�Value�Description��ASR_ECTF_WordName�CTstring�word being created��ASR_ECTF_ContextName�CTstring�Context in which word was created��ASR_ECTF_Error�CTerror�Error codes as listed in next section��Cautions

None

Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CTasr_errorBADCONTEXT	(	Invalid Context name

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out



CTasr_WordDeleteLastUtterance�Suppress the last utterance��Name:�CTstatus CTasr_WordDeleteLastUtterance(WordName, ContextName, Group, ParmList, TranInfo, Mode)��Input:�CTstring�WordName�Name of word for which the last utterance should be suppressed���CTstring�ContextName�Name of the Context���CTgrp_ct�Group�Group object��Output:�None����Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function prevents the most recent utterance associated with a CTasr_WordTrain() from being part of the training of a Word.  The function must be issued before any new training is made or before the training is committed to the Context.  In other words, the function must be issued before any other CTasr_WordTrain(), and before a CTasr_WordCommit() makes the utterance part of the permanent training of the Word. 

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_WordDeleteLastUtterance�Last Utterance Deleted��Event specific keys�Value�Description��ASR_ECTF_ContextName�CTstring�Context in which word was deleted��ASR_ECTF_Error�CTerror�Error codes as listed in next section��Cautions

None

Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CTasr_errorBADWORD	(	Invalid Word

CTasr_errorBADCONTEXT	(	Invalid Context name

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTasr_WordDeleteTraining�Delete the training on a Word��Name:�CTstatus CTasr_WordDeleteTraining( WordName, ContextName, Group, ParmList, TranInfo, Mode)��Input:�CTstring�WordName�Name of word to create���CTstring�ContextName�Name of the Context���CTgrp_ct�Group�Group object��Output:�None����Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function deletes all training associated with a Word in the specified Context.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_WordDeleteTraining�Word Training Deleted��Event specific keys�Value�Description��ASR_ECTF_WordName�CTstring�Word for which training was deleted��ASR_ECTF_ContextName�CTstring�Context in which training was deleted��ASR_ECTF_Error�CTerror�Error codes as listed in next section��Cautions

None

Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CTasr_errorBADWORD	(	Invalid Word

CTasr_errorBADCONTEXT	(	Invalid Context name

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTasr_WordDestroy�Destroy a Word��Name:�CTstatus CTasr_WordDestroy ( WordName, ContextName, Group, ParmList, TranInfo, Mode)��Input:�CTstring�WordName�Name of word to destroy���CTstring�ContextName�Context of word���CTgrp_ct�Group�Group object��Output:�None����Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function allows the application to remove a word from a Context on the ASR Resource.  The ASR Resource of the Group must support Context modification. 

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_WordDestroy�Word Destroyed��Event specific keys�Value�Description��ASR_ECTF_WordName�CTstring�word being destroyed��ASR_ECTF_ContextName�CTstring�Context in which word was destroyed��ASR_ECTF_Error�CTerror�Error codes as listed in next section��Cautions

None

Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CTasr_errorBADWORD	(	Invalid Word

CTasr_errorBADCONTEXT	(	Invalid Context name

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

CTasr_WordTrain�Train a Word��Name:�CTstatus CTasr_WordTrain ( WordName, ContextName, Group, Results, ParmList,  TranInfo, Mode)��Input:�CTstring�WordName�Name of word to train���CTstring�ContextName�Context of word���CTgrp_ct�Group�Group object��Output:�CTuint�Results�Results of the session��Standard:�CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values���Description

This function associates training with a Word in a Context. 

Different types of training may be available on Recognizers that support training.  The parmList has a KV Pair that informs the recognizer what type of training is underway: ASR_ECTF_TrainingType takes on the values CTasr_uintSPEECH, CTasr_uintTEXT, and CTasr_uintPHONETIC to describe the training input.  

If CTasr_uintTEXT or CTasr_uintPHONETIC are selected, the KVPair ASR_ECTF_TrainingInfo must also be present.  This array of CTstring will contain either the text or phonetic representation of the training material, as appropriate.  The number of elements in the value of the KVPair whose Key is  ASR_ECTF_TrainingInfo is specified by ASR_ECTF_TrainingInfoSize. 

Training of a Word in a Context is additive.  If any training already exists for the word, any new training is added to the old training.  If completely new training is needed, the CTasr_WordDeleteTraining() function should be used.

Training a word using speech is a complex interaction.  If utterances (either of a particular speaker or a Group of speakers) are used to train, several utterances may be required.  The application must often be made aware of whether the training session was successful, whether more utterances will be required, or whether training is complete.  

After each invocation of CTasr_WordTrain(), the completion event will contain one of two KVPairs.  The KVPair with the Key ASR_ECTF_WordTrain signifies that the function call is over.  The Key ASR_ECTF_WordModel signifies that the function call is over and that sufficient data have been collected. 

The completion event also contains the KVPair whose Key is  ASR_ECTF_TrainingResults and whose value is one of the values CTasr_uintSUCCESS, CTasr_uintSILENCE, CTasr_uintUNSUCCESSFUL, or CTasr_uintCOMPLETE.  The value COMPLETE signifies that the previous utterance was successful, that sufficient data have been collected, and that the CTasr_WordCommit() function may be issued. 

If the output argument Results is not NULL, its return value is a handle of a KVSet containing the KVPairs as described above.

To summarize, training can imply two loops:

an external loop for updating models on a word base 

an internal loop for acquiring a number of repetitions of the same word before activating the modeling phase.

CTasr_WordTrain() and CTasr_WordCommit() will often form a pair of loops.  The outer loop will prompt the user to determine if any training is required.  The inner loop will prompt the user for suitable utterances and use CTasr_WordTrain() to perform training.  The outer loop will then use CTasr_WordCommit() to modify the Context permanently.

Completion Event

In synchronous mode, the output argument TranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, TranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



ASR_ECTF_WordTrain�Word Trained��Event specific keys�Value�Description��ASR_ECTF_WordName�CTstring�word being trained��ASR_ECTF_ContextName�CTstring�Context in which word was trained��ASR_ECTF_TrainingResults�CTuint�One of: CTasr_uintSUCCESS, CTasr_uintSILENCE, CTasr_uintUNSUCCESSFUL, CTasr_uintCOMPLETE��ASR_ECTF_Error�CTerror�Error codes as listed in next section��

ASR_ECTF_WordModel�Word Model Training Completed��Event specific keys�Value�Description��ASR_ECTF_WordName�CTstring�Word being trained��ASR_ECTF_ContextName�CTstring�Context in which word was trained��ASR_ECTF_TrainingResults�CTuint�One of: CTasr_uintSUCCESS, CTasr_uintSILENCE, CTasr_uintUNSUCCESSFUL, CTasr_uintCOMPLETE��ASR_ECTF_Error�CTerror�Error codes as listed in next section��Cautions

The output argument results is not valid until the completion event corresponding to the API call arrives.

Errors

CT_errorBADRTC	(	Invalid RTC object

CT_errorBADGROUP	(	Invalid Group

CTasr_errorBADWORD	(	Invalid Word

CTasr_errorBADCONTEXT	(	Invalid Context name

CTasr_errorNOTSUPPORTED	(	Recognizer does not support function

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

CT_errorTIMEOUT	(	Function timed out

�� AUTONUMLGL �13.�	Player/Recorder�xe "player resource"��xe "resource:player resource"��xe "recorder resource"��xe "resource:recorder resource"�

�autonumlgl �	Introduction

The Player/Recorder API allows programmers to transmit and record data such as recorded speech or text (to be converted into speech) using a mechanism requiring only the data object’s name to be specified.  Thus a list of data of different types may be specified without the programmer needing to know all the different types.

It is vendor and client operating system independent.

�autonumlgl �	Function Summary�xe "functions:player resource functions"��xe "functions:recorder resource functions"�



Function Summary�Description��CTplyr_Play(Group, TVMList, Offset, Rtc, ParmList, TranInfo, Mode)�Start Playback from a TVM��CTplyr_AdjustSpeed(Group, Adjustment, ParmList, TranInfo, Mode)�Adjust the current playback speed��CTplyr_AdjustVolume(Group, Adjustment, Parmlist, TranInfo, Mode)�Adjust the current playback volume��CTrcdr_Record(Group, TVM, Rtc, ParmList, TranInfo, Mode)�Start Recording into a TVM���autonumlgl �	Program Interface Overview�xe "player resource:overview"��xe "recorder resource:overview"�

The S.100 API defines Player and Recorder Resources that perform the actions of playing time-varying media from a container over a channel to another Resource, or of recording data from another Resource into a container.  There are two API functions to perform these actions, �xe "functions:CTplyr_Play()"�CTplyr_Play() and �xe "functions:CTrcdr_Record()"�CTrcdr_Record(), and a variety of parameters and RTCs to modify this basic behavior.

The classes also define a set of parameters and methods for setting and getting the value of those parameters. Parameters may be used to configure the object or query information about the object (e.g., state, capabilities). Parameters are simply instance variables.  They are uniquely named from a single name space and have a type associated with them (e.g., size, format). Parameters may be set while the object is idle, at the time of initiating an operation, or while an operation is active.

To set parameters persistently, use �xe "functions:CTgrp_SetParameters"�CTgrp_SetParameters( ) when the object is idle or active.   The settings will remain in effect until changed by another call to CTgrp_SetParameters( ).  To set parameters when initiating an operation, pass the parameter list as an argument to the function.  These parameters will be in effect only for the duration of the function.

Parameters may be read/write or read-only.  Some parameters are required by the class and others are optional.  The classes define methods for determining whether a parameter is supported, the range of permissible values and its type.  These will be described in detail later in this section.

�autonumlgl �	Time Varying Media (TVM) �xe "time varying media"��xe "container:time varying media"�

A Time Varying Media object (referred to in this specification as a TVM) is a container object class for data for which a playback rate is specified. TVMs also contain implementation-specific timecodes, permitting an application to choose to play a specific number of milliseconds of a TVM, or to jump forward or backward a specific number of milliseconds in a TVM. It further specifies the coder type that should be used to play back the data.

TVM objects encompass such data types as:

Audio

ADSI

TDD

TTS

Full Motion Video

The format of the data in an TVM is not specified in this document, but TVMs can be recorded by S.100 Recorder resources, played by S.100 Player resources, and stored as S.100 Container objects (see Chapter 8).

�autonumlgl �	Coder Types�xe "coder types"��xe "player resource:Coder types"��xe "Recorder:Coder types"�

TVM objects have an associated coder type, which should be used to record the data in the TVM object, and must be used to play it.  An application must know in advance the coder types required by the TVMs it intends to use, and must choose Players and Recorders that support these coder types.

Coder implementations in an S.100 server must be able to interoperate with the server’s TVM implementation, so that locations within a TVM with respect to its timecodes may be found. The exact implementation of coders as well as of TVM features required by the coder are left to the implementor.

Recorders have a default coder type, which is used to create new data objects.

The coder type is specified by a Resource parameter, and is defined in a later section.

�autonumlgl �	Players�xe "player resource" \b��xe "resource:player resource" \b�

A Player is a Resource that is able to play the contents of a TVM to another Resource, applying the appropriate coder and observing the data rate associated with the data.

Parameters are defined for, among other things, controlling the behavior of the Player.  For example, the parameters may be used to adjust the speed and volume, or the duration of the playback.  A complete list of Player parameters appears later in this document.

�autonumlgl �	�xe "player resource:player states"�Player Description

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �22�:  Player state diagram

A player resource has three states:

IDLE	In an idle state, a Player is doing nothing.

ACTIVE	In the active state, the Player is decoding TVM data and transferring the results to another resource in the Group.

PAUSED	In the paused state, the transfer of decoded TVM data is temporarily halted.  Any pauses received while in this state are ignored.

�autonumlgl �	Recorders�xe "recorder resource" \b��xe "resource:recorder resource" \b�

A Recorder is a Resource that is able to record input received from another Resource into a TVM, applying the appropriate coder and observing the data rate associated with the data.

Parameters are defined for, among other things, controlling the behavior of the Recorder.  For example, the parameters may be used to set the coder type used to create the TVM.  A complete list of Recorder parameters appears later in this document.

�autonumlgl �	�xe "recorder:recorder states"�Recorder Description

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �23�:  Recorder state diagram

A recorder resource has three states: �xe "recorder resource:recorder states"�

IDLE	In an idle state, a Recorder is doing nothing.

ACTIVE	In the active state, the Recorder is collecting TVM data and storing it in a TVM object.

PAUSED	In the paused state, the transfer of decoded TVM data is temporarily halted.  Any pauses received while in this state are ignored.

�autonumlgl �	Runtime Control

�autonumlgl �	Recognized Actions

Player

The Actions that may be received by a Player object are listed below.

Table � seq table �95�:  Player Runtime Control Actions



Control Key�Definition�Event Generated��Player_ECTF_Stop�Stop the current operation on a player object�Player_ECTF_Play��Player_ECTF_Resume�Resume the current operation on a player object if paused�Player_ECTF_Resume��Player_ECTF_Pause�Pauses current operation on a player�Player_ECTF_Pause��Player_ECTF_SpeedUp�Increase speed of playback by one increment�Player_ECTF_Speed��Player_ECTF_SpeedDown�Decrease speed of playback by one decrement�Player_ECTF_Speed��Player_ECTF_ToggleSpeed�Toggle current speed with normal speed�Player_ECTF_Speed��Player_ECTF_NormalSpeed�Reset speed to normal�Player_ECTF_Speed��Player_ECTF_VolumeUp�Increase volume of playback�Player_ECTF_Volume��Player_ECTF_VolumeDown�Decrease volume of playback�Player_ECTF_Volume��Player_ECTF_ToggleVolume�Toggle current volume with normal speed�Player_ECTF_Volume��Player_ECTF_NormalVolume�Reset volume to normal�Player_ECTF_Volume��Player_ECTF_JumpForward�Jump forward a time interval (specified by Player_ECTF_JumpIncrement)�Player_ECTF_JumpForward��Player_ECTF_JumpBackward�Jump backward a time interval (specified by Player_ECTF_JumpIncrement)�Player_ECTF_JumpBackward��The SpeedUp and SpeedDown actions cause the current speed to be adjusted one unit up or down respectively. The amount of change each unit represents is specified in the SpeedChange parameter as percent deviation from “normal”. The Player_ECTF_SpeedChange parameter controls the amount by which the Speed is changed by the SpeedUp and SpeedDown actions.  If execution of a SpeedUp/SpeedDown exceed the maximum/minimum deviation from normal, the SpeedUp/SpeedDown is ignored.

If the current speed is an adjusted value, the action ToggleSpeed changes the speed to the normal value. If the current speed is a normal value and there has been an adjustment in speed, the action ToggleSpeed changes the speed to the adjusted value. If no adjustment has previously occurred, this action is ignored.

The action NormalSpeed causes the speed value to be reset to normal as if no adjustments had ever occurred (i.e., ToggleSpeed would subsequently be ignored).

The VolumeUp and VolumeDown actions cause the current volume to be adjusted one unit up or down respectively. The amount of change each unit represents is specified in the VolumeChange parameter as a deviation in dB from normal volume. If execution of a VolumeUp/ VolumeDown exceed the maximum/minimum deviation (in dB) from normal, the VolumeUp/ VolumeDown is ignored.�

If the current volume is an adjusted value, the action ToggleVolume changes the volume to the normal value. If the current volume is a normal value and there has been an adjustment in volume, the action ToggleVolume changes the volume to the adjusted value. If no adjustment has previously occurred, this action is ignored.

The action NormalVolume causes the volume value to be reset to normal as if no adjustments had ever occurred (i.e., ToggleVolume would subsequently be ignored).

The actions JumpForward and JumpBackward cause the current position in the TVM to be changed by the number of milliseconds specified in the parameter Player_ECTF_JumpIncrement. This interval is independent of coder type, and may span media boundaries (e.g., between a PCM media and a TTS media). The precision of the jump is implementation- and media-dependent.

Recorder

The Actions that may be received by a Recorder object are listed below.

Table � seq table �96�: Recorder Runtime Control Actions



Control Key�Definition�Event Generated��Recorder_ECTF_Stop�Stop the current operation on a recorder object�Recorder_ECTF_Record��Recorder_ECTF_Resume�Resume the current operation on a recorder object if paused�Recorder_ECTF_Resume��Recorder_ECTF_Pause�Pauses current operation on a recorder�Recorder_ECTF_Pause���autonumlgl �	Recognized Conditions

Player Conditions

The following conditions are recognized by this object and may be used to trigger runtime controls (i.e., send a control message to another an object).



Table � seq table �97�:  Player Runtime Control Conditions



Condition Key�Definition��Player_ECTF_PlayStarted�Playback has started��Player_ECTF_Play�Playback has completed��Recorder Conditions

The following conditions are recognized by this object and may be used to trigger runtime controls (i.e., send a control message to another an object).



Table � seq table �98�:  Recorder Runtime Control Conditions



Condition Key�Definition��Recorder_ECTF_Record�Record has completed���autonumlgl �	Parameters

In the tables below, the following columns are used:

Key: The Key of the KVPair that names the parameter. It is, of course, of type CTsymbol.  The prefix Player_ECTF_ or Recorder_ECTF_, which must actually appear in the Key, is omitted in the table for space reasons.

Data Type: The value type corresponding to the Key.

State When Settable: The state (within the Resource’s state diagram) in which the parameter may be changed by the application.

Default Value: The value in effect if the application does not set the parameter.

Parameter Range: The range of legal values for the parameter.

Definition: A description of the parameter.

�autonumlgl �	Player Parameters

Parameters in the name column of following table are prefixed by Player_ECTF_.



Table � seq table �99�:  Player Parameters



Key�Data Type�State When Settable�Default Value�Parameter Range�Definition��Duration�CTuint�Idle�CTplyr_uint FOREVER�0 to 1000000, or CTplyr_uintFOREVER

(the range returned by CTgrp_GetParameterRange is [0,1000000]�The maximum duration for the play in milliseconds..��EnabledEvents�KVSet�Idle�Empty��(see table below)�The elements in the KVSet specify which events are enabled and hence generated by the Player.��JumpIncrement�SCuint�Idle�0�0 to 1000000�The number of milliseconds by which a JumpForward or JumpBackward action causes the current position in the TVM to move.��SpeedChange�CTuint�Idle�0�1% to maximum positive deviation from normal (see parameter)�Amount by which the speed is changed by the SPeedUp and SpeedDDown RTC actions.��StartPaused�CTbool�Idle�CT_bool FALSE�not applicable�Determines whether the play starts in pause mode

��VolumeChange�CTuint�Idle�0�1 to maximum deviation from normal, in dB�The amount by which the volume is changed by each increment up or down (e.g., by the VolumeUp/VolumeDown actions).��CoderTypes�CTsymbol�Read-Only�N/A�(see table below)�The coders supported by the player.��

The following Player parameters take on enumerated ranges. Legal values for their respective parameters are given in the following table.



Table � seq table �100�:  Enumerated Ranges for Player Parameters



Name�Legal Values�Description��EnabledEvents�The keys:�Player_ECTF_Pause,�Player_ECTF_Resume,�Player_ECTF_Speed,�Player_ECTF_Volume, and Player_ECTF_Marker.

The values for which may be either Boolean value.�A KVSet  used to set which events are generated.  (e.g. can be used to turn on and off Player_ECTF_Speed events). If the an event key is in the KVSet and its value is true, then the event is enabled��CoderTypes�any coder type (from table)�The coders supported by the player.���autonumlgl �	Recorder Parameters

Parameters in the name column of following table are prefixed by Recorder_ECTF_.



Table � seq table �101�:  Recorder Parameters



Name�Data Type��State when settable�Default Value�Possible Values�Definition��BeepLength�CTuint�Idle�50�0 to 100�Specifies the length of the start beep, in milliseconds��BeepFrequency�CTuint�Idle�1500�0 to 5000�Specifies the frequency of the start beep, in hertz.��Coder�CTsymbol�Idle�0�not applicable�Specifies the coder type used when a TVM is created by  CTrcdr_Record( ).��CoderTypes�CTsymbol[]�Read-Only�N/A�not applicable�The coders supported by the recorder.��MinDuration�CTuint�Idle�0�0 to 1000000�Minimum duration before record will complete, in milliseconds��Duration�CTuint�Idle�CTrcdr_uint FOREVER�0 to 1000000 or CTrcdr_uintFOREVER

The value returned by CTgrp_GetParameterRange is [0, 1000000]�Maximum duration for the record in milliseconds.��StartBeep�CTbool�Idle�CT_bool FALSE�not applicable (see table below)�Specifies whether a subsequent record will be preceded with a beep��StartPause�CTbool�Idle�CT_bool FALSE�not applicable (see table below)�Determines whether the record starts in pause mode.��EnabledEvents�KVSet�Idle�Empty�not applicable�The entries in the KVSet specify events that are enabled and hence will be generated by the Resource��PauseCompressionOn�CTbool�Idle�CTboolFALSE�not applicable (see table below�Determines whether pause compression is enabled��PauseThreshold�CTuint�Idle�0�0 to 1000000�Specifies the threshold (in milliseconds) for which pause compression is triggered��SilenceTerminationOn�CTbool�Idle�CTboolFALSE�not applicable (see table below)�Deterines whether silence termination is enacted��SilenceThreshold�CTuint�Idle�0�0 to 1000000�Specifies the threshold (in milliseconds) for which pause compression is triggered��The Recorder resource provides a number of parameters for modifying the behavior of the record operation.

The MinDuration parameter specifies the minimum duration of a valid record operation. If a record operation is started and then for some other reason terminated after less that MinDuration milliseconds has elapsed, no record operation will have taken place, and an appropriate failure event will be returned.

The parameters PauseCompressionOn and PauseThreshold specify the operation of pause compression in the resource. If pause compression is enabled, then during a record operation all speech pauses (i.e., no energy detected) of longer than PauseThreshold milliseconds will be removed from the recording.

The parameters SilenceTerminationOn and TerminationThreshold control the operation of silence termination in the resource. If silence termination is enabled, then during a record operation, a speech pause (i.e., no energy detected) of longer than SilenceThreshild milliseconds will cause the record operation to terminate and for the Record completion event to be returned.

The following Recorder parameters take on enumerated ranges. Legal values for their respective parameters are given in the following table.



Table � seq table �102�:  Enumerated Ranges for Recorder Parameters



Name�Legal Values�Description��EnabledEvents�The keys:�Recorder_ECTF_Pause, and Recorder_ECTF_Resume.

The values for which may be either boolean value.�A bitmask used to set which events are generated.  (e.g. can be used to turn on and off Recorder_ECTF_Pause events). If the an event key is in the KVSet and its value is true, then the event is enabled.��Coder�any coder type (from table)�Specifies the coder type used when a TVM is created by  CTrcdr_Record( ).��CoderTypes�any coder type (from table)�Specifies the coder type used when a TVM is created by  CTrcdr_Record( ).��StartBeep�CT_boolTRUE or CT_boolFALSE�Specifies whether a subsequent record will be preceded with a beep��StartPause�CT_boolTRUE or CT_boolFALSE�Determines whether the record starts in pause mode.��PauseCompressionOn�CT_boolTRUE or CT_boolFALSE�Determines whether pause compression is enabled��SilenceTerminationOn�CT_boolTRUE or CT_boolFALSE�Determines whether silence termination is enabled.��

�autonumlgl �	Unsolicited Events�xe "player resource:unsolicited events"��xe "event:player resource unsolicited events"�

�autonumlgl �	Player Events



Player_ECTF_Marker�TTS Marker has been reached��Event specific keys�Value Type�Description��Player_ECTF_Marker�CTsymbol�In playing a TTS TVM, a marker has ben reached��Message_ECTF_Qualifier�CTuint�Reason why the event was generated.  The range of values is given in the next section��Session_ECTF_Error�CTerror�Possible error values are listed in the next section��

Player_ECTF_Play�Playback has completed (both unsolicited event and completion event)��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Player_ECTF_TVM�CTuint�An index into a TVM list, indicating at which item in TVM list the Play stopped.��Player_ECTF_Offset�CTuint�An index into a TVM data stream indicating where in the data stream the Play stopped (in milliseconds).��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the Play to stop.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��

Player_ECTF_Pause�Playback has paused��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Player_ECTF_TVM�CTuint�An index into a TVM list, indicating at which item in TVM list the Play stopped.��Player_ECTF_Offset�CTuint�An index into a TVM data stream indicating where in the data stream the Play paused.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the Play to stop.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��



Player_ECTF_Resume�Playback has resumed��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Player_ECTF_TVM�CTuint�An index into a TVM list, indicating at which item in TVM list the Play resumed��Player_ECTF_Offset�CTuint�An index into a TVM data stream indicating where in the data stream the Play resumed.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the Play to resume.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��



Player_ECTF_Volume�Playback volume has changed��Event specific keys�Value Type�Description��Message _ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Message_ECTF_Qualifier�CTuint�The possible Qualifiers are described below��Player_ECTF_ChangeType�CTuint�CT_uintVolumeUp, CT_uintVolumeDown, CT_uintToggleVolume, CT_uintNormalVolume, indicating how the volume changed.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the volume to change.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��



Player_ECTF_Speed�Playback speed has changed��Event specific keys�Value Type�Description��Message _ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Player_ECTF_ChangeType�CTuint�CT_uintSpeedUp, CT_uintSpeedDown, CT_uintToggleSpeed, CT_uintNormalSpeed indicating how the speed changed��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the speed to change.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.���autonumlgl �	Player Event Qualifier Values

The following cause codes are returned as keys in the completion event.  The following table lists the values a player resource can return in the Session_ECTF_Qualifier standard event key.



Table � seq table �103�:  Player Event Qualifier Values



Qualifier�Type�Description��CT_uintRTC�CTuint�An RTC trigger caused the event.��CTgrp_uintStop�CTuint�A CTgrp_Stop function was issued on this resource.��CTplyr_uintEOD�CTuint�End of data.  Playback ended because there is no more data to play.��CT_uintDuration�CTuint�Playback ended because duration time has been reached. ���autonumlgl �	Recorder events�xe "recorder resource:unsolicited events"��xe "event:recorder resource unsolicited events"�



Recorder_ECTF_Record�Recording in progress (both unsolicited and completion event)��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the Record to begin.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��

Recorder_ECTF_Pause�Recording has paused��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the Record to pause.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��

Recorder_ECTF_Resume�Recording has resumed��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the Record to resume.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��

�autonumlgl �	Recorder Event Qualifier Values

The following cause codes are returned as keys in the completion event.  The following table lists the values a recorder resource can return in the Recorder_ECTF_Qualifier standard event key.



Table � seq table �104�:  Recorder Event Qualifier Values



Qualifier�Type�Description��CT_uintRTC�CTuint�An RTC trigger caused the event.��CT_uintDuration�CTuint�Record ended because duration time has been reached. ��CT_uintPauseTermination�CTuint�Record ended because a pause termination was enabled and a pause of more than TerminationThreshold milliseconds was observed.��CTgrp_uintStop�CTuint�A CTgrp_Stop function was issued on this resource.��

�autonumlgl �	Definitions

�autonumlgl �	Error Codes

All errors listed below are of type CTerror.



Table � seq table �105�:  Player/Recorder Error Codes



Error Code Name�Description��CT_errorBADGROUP�Invalid Group Object��CT_errorBADPARM�Invalid Parameter in Function Call��CT_errorBADRESOURCE�Function Not Supported by this Group��CT_errorBADRTC�Invalid Runtime Control Object��CT_errorBUSY�Resource is Already Busy��CT_errorSYSTEM�System Error��CTplyr_errorBADTVM�Bad or corrupted TVM object��CTplyr_errorCODER�Coder type not supported��CTplyr_errorBADCONTAINER�Bad or corrupted TVM Container��CTplyr_errorPAUSED�Cannot Pause a Player that is currently paused��CTplyr_errorNOTPAUSED�Cannot Resume a Player not in paused mode��CTrcdr_errorBADTVM�Bad or corrupted TVM object��CTrcdr_errorCODER�Coder type not supported��CTrcdr_errorPAUSED�Cannot Pause a Player/Recorder that is currently paused��CTrcdr_errorNOTPAUSED�Cannot Resume a Player/Recorder not in paused mode���autonumlgl �	Coder Types�xe "coder types"�

A Recorder and Player can support more than one type of coder.  A list of supported coders is available by querying a Player or Recorder's Coder capability.  The following is a list of currently defined coder types.  The coder types are constants of the format ECTF_CODER<Coder Type>.

The following is a list of recognized coder types. This list is not exhaustive and will continue to be expanded.



Table � seq table �106�:  Player/Recorder Coder Types



Coder Type�Description��ECTF_CODER24KADPCM�ADPCM with 24k sampling rate��ECTF_CODER32KADPCM�ADPCM with 32k sampling rate��ECTF_CODER_uint11KADPCM�ADPCM with 11k sampling rate��ECTF_CODER48KMuLawPCM�Mu-law PCM with 48k sampling rate��ECTF_CODER64KMulawPCM�Mu-law PCM with 64k sampling rate��ECTF_CODER11KMulawPCM�Mu-law PCM with 11k sampling rate��ECTF_CODER48KALawPCM�A-law PCM with 48k sampling rate��ECTF_CODER64KALawPCM�A-law PCM with 64k sampling rate��ECTF_CODER11KALawPCM�A-law PCM with 11k sampling rate��ECTF_CODER24K8BitLinear�24 kHz 8 bit linear audio��ECTF_CODER32K8BitLinear�32 kHz 8 bit linear audio��ECTF_CODER11K8BitLinear�11 kHz 8 bit linear audio��ECTF_CODERADSI�ADSI��ECTF_CODERVoiceView�VoiceView capable coder��ECTF_CODEREnglishText�Generic English Text��ECTF_CODERGermanText�Generic German Text��ECTF_CODERSpanishText�Generic Spanish Text��ECTF_CODERFrenchText�Generic French Text��ECTF_CODERDutchText�Generic Dutch Text��ECTF_CODERKoreanText�Generic Korean Text��ECTF_CODERAsciiText�Generic ASCII Text��ECTF_CODERTDD�TDD��The text coder types above specify straight text.  Generally these coder types are used as the value of the Coder property of a TVM to indicate this text has no special control codes for a specific TTS technology.  TTS coders that support special control have coder types of the form:

		ECTF_CODERLanguageText.

Any TTS technology that reports a coder capability of a vendor-specific type will also support the generic type as well.  For example, Company XYZTTS Player Resource would return coder capabilities of ECTF_CODERDutchText as well ECTF_CODERXYZTTSDutchText.

The AsciiText coder type is another generic coder type that multiple coders can support.  For example a coder that reports a coder type of  VoiceView ADSI will accept AsciiText.

�autonumlgl �	TVM Properties

�xe "time-varying media"�TVMs are specific types of data objects stored in Containers.  TVMs are the data that is played and recorded by the Player and Recorder resources.  The Player and Recorder resources require that TVMs have the following properties:



Table � seq table �107�:  Player/Recorder Properties



Property Name�Description��Coder�Coder type that must be used to play back this data.��The Player and Recorder resources specify that TVMs have the following optional properties which may be dependent on the type of coders the resource implemented:



Table � seq table �108�:  Player/Recorder Optional Properties



Property Name�Description��Paragraph�Number of paragraphs in the text��Sentences�Number of sentences in the text��Duration�Length of time it takes to playback this TVM at normal speed, in seconds. ��

�autonumlgl �		Resource Attributes

Resource Attributes are terms used in the Application Profile to specify a Resource’s features.  They correspond to parameters maintained by the Resource in an S.100 server, and are defined to provide the wherewithal for an application to request Resources with appropriate features when creating and configuring a Group.

�autonumlgl �	Player Attributes

The following attributes are defined for all Player Resources.  Their corresponding parameters have the format Player_ECTF_<Name>, where <Name> appears in the following table.



Table � seq table �109�:  Player Attributes



Name�Data Type��Standard Values�Definition��Speed�CTirange�-100% (stopped) to maximum percentage positive deviation from normal�Indicates that speed control is required.  When a Group has this attribute the following may be used/generated:

Parameters: SpeedChange, and the Speed key in EnableEvents.

Events: Speed

APIs: CTplyr_AdjustSpeed

RTC Actions: SpeedUp, SpeedDown

The range of this attribute indicates the range supported by the Speed parameter. This parameter is measured in maximum number of increments above and below normal.��Volume�CTirange�minimum deviation (in dB) from origin to maximum deviation (in dB) from origin�Indicates that volume control is required.  When a Group has this attribute the following may be used/generated:

Parameters: VolumeChange, and the Volume key in EnableEvents.

Events: Volume

RTC Actions: VolumeUp, and VolumeDown

The range of this attribute indicates the range supported by the Volume parameter.��Pause�-�-�Indicates that the player supports pause and resume.

When a Group has this attribute the following may be used/generated:

Parameters: the Pause and Resume keys in EnableEvents, and StartPaused.

Events: Pause, and Resume��Coder�CTsymbol�any coder type�Indicates that the coder type is supported.  

When the Group value indicates a TTS coder the following may be used/generated:

Parameters: the Marker key in EnableEvents.

Events: Marker

The value of this attribute will appear in the CoderTypes parameter.��

�autonumlgl �	Recorder Attributes

The following attributes are defined for all Recorder Resources.  Their corresponding parameters have the format Recorder_ECTF_<Name>, where <Name> appears in the following table.



Table � seq table �110�:  Recorder Attributes



Name�Data Type�Standard Values�Definition��Beep�-�-�Indicates whether beep is supported.  When a Group has this attribute the following may be used/generated:

Parameters: StartBeep, BeepLength and BeepFrequency��Pause�-�-�Indicates that the player supports pause and resume.  When a Group has this attribute the following may be used/generated:

Parameters: the Pause and Resume keys in EnableEvents, and StartPaused.

Events: Pause, and Resume��Coder�CTsymbol�any coder type�Indicates that the coder type is supported.  

The value of this attribute will appear in the CoderTypes parameter.��FixedBeep�-�-�Whether beep is supported.  When a Group has this attribute the following may be used/generated:

Parameters: StartBeep

This is a restricted form of the “beep” attribute, for Resources that do not allow the beep length of frequency to be set.����autonumlgl �	Player/Recorder Function Definitions



CTplyr_Play�	Playback from a TVM��Name:�CTstatus CTplyr_Play ( Group, TVMList, Offset Rtc, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTstring[]�TVMList[]�List of one or more TVMs to play from���CTint�Offset�Offset within the first TVM in the list to start the Play from��Output:�None����Standard:�CTkvs_ct�Rtc�Run Time Control object handle���CTkvs_ct�ParmList�List of parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ����xe "Function details:Player function"��xe "Player function"�Description

This function plays recorded data from a TVM.  This function takes a list of one or more TVMs as an argument and an offset within the first TVM to indicate where to start the playback.  The Player attempts to extract the data from the TVMs in the list and applies the appropriate decoding algorithm.

The Player determines the decoding algorithm to apply based on a property of each TVM in the list.  If the Player Resource is unable to decode the data indicated by the TVM, the operation will fail .  

If the Player is capable of playing the TVM the system will set up a transmit TDM relationship between the Player Resource and some other Resource in the Group.  This resource will typically be the Primary Device of the Group.

Parameters may be set prior to the initiation of the operation, at the time of initiation, or after the operation is started.  A specific parameter may have restrictions on when it can be set.

The arguments for this function are defined as follows:

Group	Specifies the handle of an existing Group object.

TVMList	Specifies an array of one or more TVM objects to play.  Each element in the array is a TVM name as a null-terminated ASCII string of the form "CONTAINER_NAME:TVM_NAME".  The end of the TVM list is indicated by a NULL string.

Offset	Specifies the offset into the first TVM at which to start playback.  The offset must be specified in milliseconds.

Rtc	Specifies the handle of the runtime control object that determines how this function is to be  terminated or its operation modified.

ParmList	Specifies the list of parameters to apply to this function.�

TranInfo	Specifies the handle of the KVSet in which functional return information is returned.

Mode	Specifies either asynchronous/synchronous an mode. Choose one only:�CT_modeASYNC:	Runs this function asynchronously.�CT_modeSYNC:	Runs this function synchronously.

Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Player_ECTF_Play�Playback has completed (both unsolicited event and completion event)��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in an earlier section.��Player_ECTF_TVM�CTuint�An index into a TVM list, indicating at which item in TVM list the Play stopped.��Player_ECTF_Offset�CTuint�An index into a TVM data stream indicating where in the data stream the Play stopped (in milliseconds).��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the Play to stop.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��Cautions

None.

Errors

CTplyr_errorBADTVM	(	The TVM passed to the player was corrupted

CTplyr_errorCODER	(	Player does not support the coder type of the TVM

CT_errorBADRTC	(	Bad RTC object

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

�

CTplyr_AdjustSpeed�	Adjust the current speed��Name:�CTstatus CTplyr_AdjustSpeed ( Group, Adjustment, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTuint�Adjustment�How speed adjustment should occur��Output:�None����Standard:�CTkvs_ct�ParmList�List of parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ����xe "Function details:Player function"��xe "Player function"�Description

This function adjusts the current speed of the active Play function.  Speed may be adjusted a single unit change up or down.  The value of that change is specified by the SpeedChange parameter and is expressed in units of %deviation from normal.

This function may also be used to toggle the current speed between normal and a previously adjusted value.  The speed may also be reset to normal.

The arguments for this function are defined as follows:

Group	Specifies the handle of an existing Group object.

Adjustment	Specifies the type of speed adjustment desired.  Setting this argument to CTplyr_SpeedUP or CTplyr_SpeedDown results in a unit change in speed up or down respectively.  CTplyr_ToggleSpeed causes the speed to toggle to normal if currently at an adjusted value or to the last adjusted value if running at normal.  If no adjustments have been made this option is ignored.  If CTplyr_NormalSpeed is used the play speed is set to normal as if no adjustments had been made.

ParmList	Specifies the list of parameters to apply to this function.��

TranInfo	Specifies the handle of the KVSet in which functional return information is returned.

Mode	Specifies either asynchronous/synchronous an mode. Choose one only:�CT_modeASYNC:	Runs this function asynchronously.�CT_modeSYNC:	Runs this function synchronously.



Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Player_ECTF_AdjustSpeed�Speed has been adjusted)��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in an earlier section.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the speed change. This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��

Cautions

None.

Errors

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorNOTSUPPORTED	(	Speed change not supported

CT_errorSYSTEM		(    System Error

�

CTplyr_AdjustVolume�	Adjust the current volume��Name:�CTstatus CTplyr_AdjustVolume ( Group, Adjustment, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTuint�Adjustment�How volume adjustment should occur��Output:�None����Standard:�CTkvs_ct�ParmList�List of parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ����xe "function details:flayer function"��xe "flayer function"�Description

This function adjusts the current volume of the active Play function.  Volume may be adjusted a single unit change up or down.  The value of that change is specified by the VolumeChange parameter and is expressed in units of deviation in dB from normal.

This function may also be used to toggle the current volume between normal and a previously adjusted value.  The volume may also be reset to normal.

The arguments for this function are defined as follows:

Group	Specifies the handle of an existing Group object.

Adjustment	Specifies the type of volume adjustment desired.  Setting this argument to CTplyr_VolumeUp or CTplyr_VolumeDown results in a unit change in volume up or down respectively.  CTplyr_ToggleVolume causes the volume to toggle to normal if currently at an adjusted value or to the last adjusted value if running at normal.  If no adjustments have been made this option is ignored.  If CTplyr_NormalVolume is used the play volume is set to normal as if no adjustments had been made.

ParmList	Specifies the list of parameters to apply to this function.��

TranInfo	Specifies the handle of the KVSet in which functional return information is returned.

Mode	Specifies either asynchronous/synchronous an mode. Choose one only:�CT_modeASYNC:	Runs this function asynchronously.�CT_modeSYNC:	Runs this function synchronously.



Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Player_ECTF_AdjustVolume�Volume has been adjusted��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in an earlier section.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the volume change. This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��

Cautions

None.

Errors

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorNOTSUPPORTED	(	Volume change not supported

CT_errorSYSTEM		(    System Error







CTrcdr_Record�Record to a TVM��Name:�CTstatus CTrcdr_Record(Group, TVM, Rtc, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object handle���CTstring�TVM�Pointer to string representing TVM to record to��Output:�None����Standard:�CTkvs_ct�Rtc�RTC object���CTkvs_ct�ParmList�List of parameters to apply to this function���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

�xe "function details:recorder function"��xe "recorder function"�This function records data from some other object in a Group to a TVM.  This function takes TVM name as the location where the recorded data will be placed.  The Recorder will attempt to transfer data encoded using the coder type implied by the TVM.  The Recorder will determine if it is capable of coding the data using the algorithm specified in the TVM.  If the TVM does not exist, the Recorder will create it and use the coder type specified in the CODER parameter, if the specified container does not exist the operation will fail.  If there is no TVM or CODER parameter, the operation will fail.

Parameters may be set prior to initiation of the operation, at the time of initiation, or after the operation is started.  The arguments for this function are defined as follows:

Group	Specifies the handle of an existing Group object.

TVM	Specifies the name of the TVM object to record to.  The TVM name is a null-terminated ASCII string of the form "CONTAINER_NAME:TVM_NAME".

Rtc	Specifies the handle of the runtime control object that determines how this function is to be  terminated or its operation modified.

ParmList	Specifies the list of parameters to apply to this function.  Defined parameters are listed in Section 6.3.

TranInfo	Specifies the handle of the KVSet in which functional return information is returned.

Mode	Specifies the asynchronous/synchronous mode.  Choose one only:�CT_modeASYNC:	Runs this function asynchronously.�CT_modeSYNC:	Runs this function synchronously.

Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



Recorder_ECTF_Record�Recording in progress (both unsolicited and completion event)��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the Record to begin.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��Cautions

None.

Errors

CTrcdr_errorBADTVM	(	The TVM passed to the recorder was corrupted

CTrcdr_errorTVMFAIL	(	An error occurred while trying to write to the TVM

CTrcdr_errorNOCONTAINER	(	An error the container does not exist

CTrcdr_errorCODER	(	Recorder does not support the coder type of the TVM

CT_errorBADGROUP	(	Invalid Group Handle

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorSYSTEM	(	System Error

�� AUTONUMLGL �14.�	Signal Detector�xe "signal detector resource" \b��xe "resource:signal detector resource" \b�

�autonumlgl �	Introduction

The Signal Detector (SD) resource allows the application to detect various types of  predefined  audio signals.  It is intended to be used in media services applications to detect user input (typically DTMF).

The SD Resource uses predefined signal templates to describe the signals to be detected, and associates tokens (i.e., strings) with each such template.

As a convenience, the signal detector allows the application to specify patterns of signals. (E.g. a variable length digit string terminated by  a specific digit).  When the SD determines that a particular pattern has been satisfied it will report back to the application with a single event .

� AUTONUMLGL �14.2.�	Function Summary�xe "functions:signal detector resource functions"�



Function Summary�Description��CTsd_FlushBuffer( Group, TranInfo, Mode)�Flush the Detector's internal buffer��CTsd_RetrieveSignals( Group, NumSignals, Patterns SigBuf, Rtc, ParmList, TranInfo, Mode)�Retrieve signals recognized by the Signal Detector.��� AUTONUMLGL �14.3.�	Program Interface Overview

The SD Resource stores internally a mathematical characterization of each signal that it can recognize; this characterization is a signal template�xe "signal template"�.  The template also has associated with it an identifying string called the �xe "signal ID"�signal ID.

When the SD Resource is in detecting mode, it continuously compares incoming signal data with its templates.

The API is designed to facilitate the input of user data through the telephony interface.

The SD Resource may report  four types of occurrences:

Detection of an individual signal;

Detection of a sequence of signals matching a pattern;

Detection of a specified number of signals;

Time-out on detecting a specific pattern or signal count.

Applications may enable the immediate notification of signal detection.  The application may then process user input in real-time as it is entered.

While applications may enable the immediate notification of detected signals, it is more common for applications to allow the SD to buffer signals until such time that one of  the application defined patterns has been detected.  The application uses the CTsd_RetrieveSignals() function to retrieve the signals that satisfied the pattern.

The application defines patterns of signals by setting SD specific parameters.  These patterns are typically used to describe expected user input characteristics  (E.g. a PIN number terminated  by a # or telephone extension beginning with 6).  When enabled, pattern detection may be used as conditions for runtime control (RTC).

The SD reports individual signal and matching pattern detection via an event.  The detected signal(s) are returned to the application as an array of CTstrings representing signal IDs.

� AUTONUMLGL �14.4.�	Resource Behavioral Description

�autonumlgl �	Signal Detector States

�EMBED Word.Picture.8���

Figure � SEQ Figure \* ARABIC �24�:  Signal Detector state diagram

� REF _Ref339369507 \* MERGEFORMAT �Figure 24� depicts the operating states in which the SD Resource operates.  There are two possible states, IDLE and DETECTING, which determine whether or not the SD Resource is attempting to match incoming signal data with templates.  The state is readable and settable via the parameter SIGD_ECTF_Mode.

In the IDLE state, no signal detection is performed.  The SD Resource is in this state when it is not attached to a Group, or when an application manually puts it into this state by setting SIGD_ECTF_Mode to CTsd_uintIDLE.

In the DETECTING state, the SD Resource continuously compares input signal data (received via its input port from some other resource) to its internally-stored templates. If a match is detected, the signal is stored in an internal buffer.

The SD Resource is placed in the DETECTING state whenever it is attached to a Group.  The application may place an IDLE SD into DETECTING state by setting the parameter SIGD_ECTF_Mode to CTsd_uintDETECTING.

� AUTONUMLGL �14.4.2.�	Internal Buffer

The purpose of the internal buffer is to maintain a history of which templates were matched over time.  The signal buffer is used by  the SD to perform signal pattern matching.  The SD resource considers all buffered signals when determining a pattern match.  The contents of the signal buffer is sometimes referred to as the “signal history”.  

As stated above,  applications will typically use the SD to buffer signals until one of  the application  defined patterns has been detected.  The application would then retrieve those signals using the  CTsd_RetrieveSignals() function.  This not only allows the application to off-load to the SD the processing burden of matching common user input characteristics, but reduces the traffic (via events) between the client application and the server.  The pattern matching capability, enabled via the internal buffer, also allows the application  to use the matching events as “conditions” for runtime control (RTC).

The signal buffer is not directly visible to the application; the only operations that the application may perform on it are to flush the buffer, to specify how buffer overflow conditions are handled (these actions are described below) and to disable buffering.  Note that if buffering is disabled the SD is unable to detect pattern matches.

The SD resource internal buffer must be at least large enough to maintain a history of 35 signals.  This size was selected in order to permit the resource to collect the longest currently known international phone number or credit card number without overflowing, and may change in the future if new, longer numbers come into use.  A vendor may provide a longer buffer if desired.  The buffer size is readable via the parameter SIGD_ECTF_BufferSize.

The internal buffer is obviously used as an input queue for detected signals.  The SD has two options for handling buffer overflow, readable and settable via the parameter SIGD_ECTF_DiscardOldest:

Discarding the oldest received signals (equivalent to “wrapping around” the buffer); this is the default option, and is specified by setting SIGD_ECTF_DiscardOldest to CT_boolTRUE.

Discarding the most recently received signals; specified by setting SIGD_ECTF_DiscardOldest to CT_uintFALSE.

The application can empty the internal buffer by invoking the CTsd_FlushBuffer() function.  When using the pattern matching capability of  the SD, flushing the buffer clears the signal history.  This allows the  application to synchronize the pattern match with user prompts.

� AUTONUMLGL �14.4.3.�	Signal Notification Methods

There are two methods by which the application may be notified of  signal detection:  

By directing the resource to produce asynchronous events when the signals are detected., or 

by directing the resource to produce asynchronous events when a particular application defined pattern has been matched.

While signal detection is in progress, detected signals may be stored in an internal buffer.  The application may be notified immediately upon signal detection, independently of whether buffering has been enabled.  Buffering must be enabled to be notified of pattern match events.

Asynchronous Signal Notification�xe "signal detector resource:asynchronous signal notification"�

These notification methods are enabled and disabled by setting the value of the parameter SIGD_ECTF_EnabledEvent.  The value of this parameter is a KVSet; each CTsymbol in the KVSet specifies an enabled event ( the values in  the set are ignored).  These methods are also enabled by requesting the detection of signal detection RTC conditions.

The signal notification methods, the events they generate, and their  treatment of the internal buffer are described below.

Single Signal Notification�xe "signal detector resource:single signal notification"�

This method reports to the application the detection of  individual signals to the application via an asynchronous event.  When a signal is matched to a template, the event SIGD_ECTF_SignalDetected is generated, with  SIGD_ECTF_OutputBuffer containing the ID of the detected signal.   If enabled, the signal is also put into the internal buffer (i.e., this event does not consume the signal).

This method is enabled if the CTsymbol SIGD_ECTF_SignalDetected is defined in the parameter SIGD_ECTF_EnabledEvents.

Pattern Match Notification�xe "signal detector resource:pattern match notification"�

The SD Resource maintains a collection of signal patterns, as parameters, which are regular expressions describing sequences of signals.  When the detection of a pattern is enabled via SIGD_ECTF_EnabledEvents  the sequence of detected signals is compared to the defined patterns; if a pattern is satisfied, the SIGD_ECTF_Patternn event  is generated where n specifies the pattern number.

The pattern is matched against any digits stored in the internal buffer as well as any subsequent digits.   When pattern matching is enabled,  the SD checks all patterns against buffered signals.  If a match exists an event will immediately be generated.  If more than one pattern is satisfied, an event will be generated for each.

It is possible for the application to define patterns that describe an OR clause.  In this case a single event will be generated when the first of the clauses have been satisfied.  No further match events will be generated for this pattern until:

Digits have been retrieved from the internal buffer via the CTsd_RetrieveSignals() function, or

an SD parameter has been changed.

If any Signal Detector parameter is changed, all pattern matching in progress is restarted with the current parameter settings.  

The SD Resource requires that no more than 16 patterns be defined simultaneously; these are set in parameters  SIGD_ECTF_Patternn (where n is 1 through 16).  The number of patterns that an SD Resource can support is specified in the parameter SIGD_ECTF_PatternCount, which is readable but not settable by the application.  A vendor may permit additional patterns by defining vendor-specific pattern parameters, e.g., SIGD_XYZ_Pattern17.

The syntax and semantics of patterns are described in a later section.

When pattern detection is enabled, accumulated detected signals are compared simultaneously to all enabled patterns.  If any pattern is matched, the completion event SIGD_ECTF_Patternn is returned (where n specifies the pattern) the application may  then use the �xe "functions:CTsd_RetrieveSignals()"�CTsd_RetrieveSignals() function to retrieve the signals that satisfied the pattern 

This method is enabled if the CTsymbol SIGD_ECTF_Patternn is defined (i.e., is not the empty string) in the parameter SIGD_ECTF_EnabledEvents.

Signal Retrieval

The signal detector resource supports two methods for retrieving detected signals:

Immediate notification, or

Retrieval of buffered signals

As described above the application may direct the SD to notify it immediately upon detection of a signal.  The notification comes in the form of an asynchronous event.  The SD specific event key SIGD_ECTF_OutputBuffer contains the ID of the signal detected.  These events may be enabled independently of whether buffering has been enabled.  If buffering has been enabled the signal will be buffered and processed for pattern match as well as being reported immediately to the application.

Applications retrieve the IDs of buffered signals through the function CTsd_RetrieveSignals( ).  This function allows the application to request the detection of a number of signals and place certain time restraints on the detection of these signals.

CTsd_RetrieveSignals( ) can terminate in one of four ways:

the internal buffer contains the requested number of signals,

one of the specified patterns have been satisfied,

one of the time-outs expired, or

the stop RTC action was triggered.

Digits retrieved through the CTsd_RetrieveSignals( ) function  are removed from the internal buffer.

Signal Count Termination�xe "signal detector resource:signal count termination"�

Signal count termination only applies when internal buffering is enabled.  The application specifies a  terminal signal count when initiating the CTsd_RetrieveSignals( )� function.  This function may be executed synchronously or asynchronously.  When the requested number of signals have been detected CTsd_RetrieveSignals( ) terminates.  The SIGD_ECTF_RetrieveSignals( ) completion event is returned with a qualifier of CTsd_uintSignalCount and SIGD_ECTF_OutputBuffer containing the IDs of the detected signals.

Time-out Termination�xe "signal detector resource:time-out termination"�

The application may specify that the signals accumulated in the internal buffer should be returned if a time-out condition has been reached.  Three different time-outs are possible:

Time-out on the initial detected signal (specified by parameter SIGD_ECTF_InitialTimeout);

Time-out on the delay between two successive detected signals (specified by parameter SIGD_ECTF_InterSigTimeout);

Time-out on failure to meet any of the other terminating conditions (specified by the parameter SIGD_ECTF_DURATION ).

When the API function CTsd_RetrieveSignals() is initiated, a clock is started. If the clock reaches the values of any of the enabled time-out thresholds, the completion event SIGD_ECTF_RetrieveSignals is returned, with an SIGD_ECTF_Qualifier of CTsd_uintInitialTimeout, CTsd_uintInterSigTimeout, or CTsd_uintDuration respectively,  and the IDs of the signals in the internal buffer returned in SIGD_ECTF_OutputBuffer.

Upon completion the CTsd_RetrieveSignals( ) function returns the contents of the internal buffer.

Pattern Termination�xe "signal detector resource:pattern termination"�

Applications specify that CTsd_RetrieveSignals() should terminate on a predefined pattern by setting the Pattern argument of the CTsd_RetrieveSignals() function:  The Pattern argument is set by setting the appropriate bits corresponding to the patterns desired.  The bits are set by or-ing the appropriate constants CTsd_uintPATTERNn where n is the desired pattern number.

The function completion event is returned with the SIGD_ECTF_Qualifier event key set to CTsd_uintPATTERNn where n corresponds to the pattern matched.  The value of SIGD_ECTF_OutputBuffer  will contain the signal IDs that satisfied the pattern.

It is possible that more than one pattern may be satisfied at the same time.  The SD will only report a single �xe "functions:CTsd_RetrieveSignals()"�CTsd_RetrieveSignals() completion event.  The pattern reported is SD implementation specific.  Applications that wish to know ALL of the patterns satisfied may do so by enabling asynchronous pattern match event notification.  The application will receive events for each pattern satisfied as well as the CTsd_RetrieveSignals() completion event.

� AUTONUMLGL �14.4.4.�	Signal Filtering Methods�xe "signal detector resource:signal filtering"�

Under certain situations it may be desirable for the application to be able to use signals for RTC (via pattern detection) yet NOT buffer the signals.  An example of this is when signals are used as controls such as for speed and volume control of a player.  The application needs to use the signals with RTC but does not want the signals buffered.

The SD resource provides a parameter, CTsd_ECTF_Filter, which allows the application to specify signals it wishes to be filtered from the internal buffer.  The parameter takes a CTstring array as a value.  The application provides the signal IDs it wishes to be filtered.

Filtered signals are the only example of where pattern matching is enabled while the digits are not buffered internally.  Note that signals already in the internal buffer are unaffected.  

When a filtered signal is detected the SD passes it to the pattern matching algorithm.  If a pattern is matched any appropriate events or RTC actions are generated however the signal ID is not placed in the internal buffer.  This implies that no history is maintained for the signal ID and therefore it will not be considered in subsequent pattern matching.  

Example:

CT_ECTF_Filter = “ # “

CT_ECTF_Pattern1 = “ # # “

CT_ECTF_Pattern2 = “ # “

In the above example, when the user enters a ‘#’, pattern 1 will be satisfied.  Pattern 2 will never be satisfied.  If the application retrieves the signals from the internal buffer using the CTsd_RetrieveSignals() the ‘#’ will not be present 

� AUTONUMLGL �14.5.�	Patterns

The syntax used to specify Patterns�xe "pattern"��xe "signal detector resource:pattern"� is based on regular expressions, modified to facilitate the expression of patterns of interest in IVR systems.

The following BNF notation defines the syntax of pattern specifications.

<PATTERN> ::= <TERM> | �<TERM> <PATTERN>;

<TERM> ::= [<COUNT>] <ALTERNATE-LIST> |� [<COUNT>] <SIGNAL> |� [<COUNT>] ‘(‘<PATTERN>’)’;

<ALTERNATE-LIST> ::= ‘[‘ <SIGNALS> ‘]’;

<SIGNALS> ::= <SIGNALS> <SIGNAL> | �<SIGNAL>;

<SIGNAL> ::= ID | ‘?’;

<COUNT> ::= ‘{‘ integer ‘}’;

Boldface tokens are terminal symbols

ID is an ASCIIZ string representing a Signal ID.

integer is an ASCIIZ string representing a positive integer

‘?’ is a single-token wildcard.  Tokens are delimited either by the reserved characters that appear above or by white space.

A Signal Pattern is a sequence of either Signal IDs or Signal ID Alternate Lists.  A term may be a specific Signal ID, in which case the incoming signal must match the corresponding template; a wildcard (denoted by ‘?’), in which case the incoming signal must match any defined template; or an Alternate List, in which case the incoming signal must match one of the templates in the List. 

Examples of legal patterns are:

1 2 3 4	The sequence of Signal IDs 1, 2, 3, and 4

5 5 5 ? ? ? ?	Three occurrences of the signal 5, followed by any four signals

A repeat count may be specified for a signal by the expression {num}, where num is a positive integer representing the number of repetitions.  For example,

{3}5 {4}?

describes the same pattern as the second bullet list pattern given above.

A set of alternatives is represented by the expression [alt1 alt2 alt3], where alt1, alt2, alt3 are signals.  For example,

	{7}[0 1 2 3 4 5 6 7 8 9]

represents 7 occurrences of any of the DTMF digits between 0 and 9, in any order.



� AUTONUMLGL �14.6.�	Parameters

The application may examine and/or set the values of several parameters that affect the performance of this object.  Further, the settable parameters may be set either persistently or non-persistently.  The following standard parameters are defined.



Table � seq table �111�:  Signal Detector Parameters



Name

SIGD_ECTF_name�Data Type��State When Settable�Default Value�Parameter Range�Definition��Pattern1�CTstring�Idle, Detecting�“”�Any string using the pattern grammar; CTgrp_GetParameterRange not applicable�Defines Pattern 1 (of 16 possible)��Pattern16�CTstring�Idle, Detecting�“”�Any string using the pattern grammar; CTgrp_GetParameterRange not applicable�Defines Pattern 16 (of 16 possible)��InitialTimeout�CTuint�Idle, Detecting�CT_uint NOTIMEOUT�0 to 100000 or CT_uintNOTIMEOUT; CTgrp_GetParameterRange returns [0..100000]�Initial time-out threshold, in ms (between starting retrieve signals and the first detected signal)��IntersigTimeout�CTuint�Idle, Detecting�CT_uint NOTIMEOUT�0 to 100000 or CT_uintNOTIMEOUT; CTgrp_GetParameterRange returns [0..100000]�Intermediate time-out threshold, in ms (between subsequent signal detections)��Duration�CTuint�Idle, Detecting�CT_uint NOTIMEOUT�0 to 100000 or CT_uintNOTIMEOUT; CTgrp_GetParameterRange returns [0..100000]�The maximum duration for retrieving signals in ms ��Mode�CTuint�Idle, Detecting�CTsd_uint DETECTING�CTsd_uintIDLE, CTsd_uintDETECTING;

CTgrp_GetParameterRange not applicable�Specifies whether or not the Resource is attempting to match input data to signal templates��PatternCount�CTuint�Read-only�implementation-dependent�implementation-dependent�Specifies the number of simultaneous patterns supported by an SD Resource��EnabledEvents�CTkvs_ct�Idle, Detecting�empty�values are SIGD_ECTF_Patternn, SIGD_ECTF_SingleSignal,�Specifies which signal reporting methods are enabled.��DiscardOldest�CTbool�Idle, Detecting�CT_boolFALSE,CT_boolTRUE�either Boolean value�When true, specifies that the oldest signals in the internal buffer should be discarded on overflow conditions��Filter�CTstring[]�Idle, Detecting�CT_bool ENABLED�any valid array of signal IDs�Filter signals from the internal buffer��BufferSize�CTuint�Read-Only�35�35�The number of signals the Resource can record in its internal buffer��Buffering�CTuint�Idle, Detecting�CT_boolFALSE, CT_boolTRUE�values are CT_boolFALSE, CT_boolTRUE�When true, internal buffering on pattern matching is enabled.��

NOTE:   If the Patternn or PatternStart parameters are modified, then pattern detection is reset.

� AUTONUMLGL �14.7.�	Runtime Control

�autonumlgl �	Recognized Actions



Table � seq table �112�:  Signal Detector Runtime Control Actions



Control Key�Definition��SIGD_ECTF_FlushBuffer�Flush the current internal buffer contents��SIGD_ECTF_Stop�Stop the current operation on an object (see CTsd_Stop() functional details)���autonumlgl �	Recognized Conditions

The following conditions are recognized by this object and may be used to trigger runtime controls, (i.e., send a control message to another an object.)



Table � seq table �113�:  Signal Detector Runtime Control Conditions



Condition Key�Definition��SIGD_ECTF_FlushBuffer�The buffer has been flushed.��SIGD_ECTF_SignalDetected�The SIGD_ECTF_SignalDetected event was issued��SIGD_ECTF_RetrieveSignals�The completion event SIGD_ECTF_RetrieveSignals was issued��SIGD_ECTF_Pattern1�Pattern 1 was detected��...�...��SIGD_ECTF_Pattern16�Pattern 16 was detected���autonumlgl �	Unsolicited Events�xe "signal detector resource:unsolicited events"��xe "event:signal detector unsolicited events"�



SIGD_ECTF_SignalDetected�Single Signal event��Event specific keys�Value Type�Description��SIGD_ECTF_OutputBuffer�CTstring�Signal ID of detected signal.��Session_ECTF_Error�CTerror�Error codes, as listed below.��

SIGD_ECTF_Patternn�Pattern Detected event��Event specific keys�Value Type�Description��Session_ECTF_Error�CTerror�Error codes, as listed below.��

SIGD_ECTF_RetrieveSignals�Retrieve Signals Completion event��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason for termination. Described below.��SIGD_ECTF_OutputSignalBuffer�CTstring�Signal ID of detected signal.��Session_ECTF_Error�CTerror�Error codes, as listed below.��

�autonumlgl �	Event Qualifiers

The following table lists values for the key SIGD_ECTF_Qualifier in events generated by the Signal Detector Resource.



Table � seq table �114�:  Signal Detector Event Qualifiers



Event�Description��CTsd_uintInitialTimeout�Initial time-out in DETECTING mode detected��CTsd_uintInterSigTimeout�Intermediate time-out (i.e., between successive signals) in DETECTING mode detected��CTsd_uintDuration�Time-out on completing matching of pattern��CTsd_uintNumSignals�The requested number of signals was retrieved.��CT_uintRTC�RTC caused the termination��CTgrp_uintStop�The function CTgrp_Stop( ) caused the termination��CTsd_uintPatternn�Patternn was matched.  SIGD_ECTF_SignalBuffer unused.��

� AUTONUMLGL �14.9.�	Definitions

�autonumlgl �	Error Codes



Table � seq table �115�:  Signal Detector Error Codes



Error Code Name�Type�Description��CT_errorBADGROUP�CTerror�Invalid Group Object��CT_errorBADPARM�CTerror�Invalid Parameter in Function Call��CT_errorBADRESOURCE�CTerror�Function Not Supported by this Group��CT_errorBADRTC�CTerror�Invalid Runtime Control Object��CT_errorBUSY�CTerror�Resource is Already Busy��CT_errorSYSTEM�CTerror�System Error��CT_errorNOTERMINATION�CTerror�No terminating condition is defined for CTsd_RetrieveSignals() invocation��CT_errorNOBUFFERING�CTerror�Buffering was disabled when pattern matching was requested.��CTsd_errorBADPATTERN�CTerror�Invalid Pattern��CTsd_errorBADMODE�CTerror�Attempt to retrieve a pattern while SD is not in DETECTING mode���autonumlgl �	Constants



Table � seq table �116�:  Signal Detector Miscellaneous Constants



Constant Name�Type�Description��CTsd_uintPATTERNn�CTuint�Pattern identifier but. (1-16)���autonumlgl �	Standard Signal Templates�xe "signal detector resource:signal templates"�

The following table lists the IDs of standard Signal Templates.  These Templates are expected to be loaded and activated in an SD Resource upon system initialization. 



Table � seq table �117�:  Signal Detector Signal Templates



Signal ID�Description�Signal ID�Description��1�DTMF “1”�9�DTMF “9”��2�DTMF “2”�0�DTMF “0”��3�DTMF “3”�*�DTMF “*”��4�DTMF “4”�#�DTMF “#”��5�DTMF “5”�a�DTMF “a”��6�DTMF “6”�b�DTMF “b”��7�DTMF “7”�c�DTMF “c”��8�DTMF “8”�d�DTMF “d”��

� AUTONUMLGL �14.10.�	Resource Attributes

Resource Attributes are terms used in the Application Profile to specify a Resource’s features.  They correspond to parameters maintained by the Resource in an S.100 server, and are defined to provide the wherewithal for an application to request Resources with appropriate features when creating and configuring a Group.

�autonumlgl �	Signal Detector Attributes

The following attributes are defined for all Signal Detector Resources.  Their corresponding parameters have the format SIGD_ECTF_<Name>, where <Name> appears in the following table.



Table � seq table �118�:  Signal Detector Attributes



Name�Data Type�Definition��SIGD_ECTF_DiscardOldest�N/A�Indicates that wrap mode is supported for the internal buffer.  When a Group has this attribute then when the internal buffer overflows, the oldest detected signals are discarded.��SIGD_ECTF_PatternCount�CTuint�Number of patterns supported by the signal detector��SIGD_ECTF_BufferSize�CTuint�Indicates the size of the signal buffer.  The value of this attribute is reflected by the BufferSize parameter.��SIGD_ECTF_Buffering�CTuint�Internal buffering and pattern matching capability enabled or disabled.����autonumlgl �	Signal Detector Function Definitions



CTsd_FlushBuffer�Flush the Detector's internal buffer��Name:�CTstatus CTsd_FlushBuffer( Group, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group��Output:�None����Standard:�CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function instructs the SD to flush its internal buffer.

Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



SIGD_ECTF_FlushBuffer�Flush internal buffer (completion event)��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the event to occur.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��Cautions

None

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBUSY	(	Resource is Already Busy

CT_errorSYSTEM	(	System Error



CTsd_RetrieveSignals�Retrieve detected signals from the Detector��Name:�CTstatus CTsd_RetrieveSignals( Group, NumSignals, Patterns, SigBuf, Rtc, ParmList, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group���CTuint�NumSignals�Number of signals to retrieve���CTuint�Patterns�Patterns to enable��Output:�CTstring[] *�SigBuf�Result buffer descriptor��Standard:�CTkvs_ct�Rtc�Runtime control���CTkvs_ct�ParmList�Parameter list���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values. ���Description

This function passes to the Signal Detector Resource a set of parameter and RTC values specifying patterns or signal counts, and receives a completion event containing which pattern or signal count was satisfied, and the IDs of the retrieved signals. In synchronous mode, the buffer pointed to by the output parameter SigBuf Will be filled with the resulting signal Ids.

The value of the Patterns argument specifies which  of the application specified patterns to enable.  This argument takes a bit-wise value using the CTsd_uintPATTERNn constants.

E.g.  CTsd_uintPATTERN1+CTsd_uintPATTERN2+CTsd_uintPATTERN16

The function will terminate with either an error or a completion event.

Note the this function is only applicable when buffering is enabled.

Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.





SIGD_ECTF_RetrieveSignals�CTsd_RetrieveSignals() has completed��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Reason why the event was generated. Possible values are listed in a later section.��SIGD_ECTF_OutputBuffer�CTstring�Signal ID of detected signal(s).��Session_ECTF_Error�CTerror�Error codes, as listed in the next section��Session_ECTF_RTCTrigger�CTsymbol�The RTC Condition that caused the event to occur.  This is only present if Session_ECTF_Qualifier contains CT_uintRTC.��Parameters

Naming Convention: SIGD_ECTF_<key>

Pattern1...Pattern16�Pattern definitions��InitialTimeout�Time-out on receipt of first Signal ID��IntersigTimeout�Time-out between successive Signal ID arrivals��Duration�Time-out before any pattern matched ��SignalCount�Number of Signals to be accumulated��Cautions

The output argument SigBuf is not valid until the completion event corresponding to the API call arrives.

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBADRTC	(	Invalid Runtime Control Object

CT_errorBUSY	(	Resource is Already Busy

CT_errorSYSTEM	(	System Error

CTsd_errorNOTERMINATION	(	No termination conditions (e.g., time-outs or patterns) defined

CTsd_errorBADPATTERN	(	Invalid Pattern

CTsd_errorBADMODE	(	Attempt to use function when SD not in DETECTING mode

CT_errorNOBUFFERING	(	Buffering not enabled

�� AUTONUMLGL �15.�	Signal Generator�xe "signal generator resource" \b��xe "resource:signal generator resource" \b�

� AUTONUMLGL �15.1.�	Introduction 

The Signal Generator (SG) resource allows an application to generate various types of tones and signals.  The SG resource API is vendor and client operating system independent.

The S.100 Signal Generator (SG) allows the user to generate tones and signals of several descriptions by any Group, to which a SG Resource is attached.

� AUTONUMLGL �15.2.�	Function Summary�xe "functions:signal generator resource functions"�



Function Summary�Description��CTsg_SendSignals(Group, SignalList, Rtc, TranInfo, Mode)�Send signals��� AUTONUMLGL �15.3.�	Program Interface Overview�xe "signal generator resource:overview"�

The signals used by the SG are defined by Signal Templates, which contain all of the parameters (e.g., frequencies, durations, cadences) needed to characterize a signal.  Signal Templates�xe "Signal Templates"� are represented as Key Value Sets (KVSs).

All of the commands reflected in this API may be issued by directly calling the function through its ‘C’ bindings or indirectly by passing the command message using the CTgrp_Execute() function.

All functions may be run asynchronously or synchronously.

� AUTONUMLGL �15.4.�	Resource Behavioral Overview



�autonumlgl �	Description

The SG has no distinguished state in which signals may be generated. The application causes signals to be sent by issuing the �xe "functions:CTsg_SendSignals()"�CTsg_SendSignals() function. The SG transmits the waveforms corresponding to the sequence of Signal IDs (ASCIIZ strings that identify Signal Templates) until either a STOP command is received or the end of the Signal ID sequence is reached.

� AUTONUMLGL �15.5.�	Runtime Control

�autonumlgl �	Recognized Actions



Table � seq table �119�:  Signal Generator Runtime Control Actions



Control Key�Definition��SG_ECTF_Stop�Stop the current operation on an object���autonumlgl �	Recognized Conditions

The following conditions are recognized by this object and may be used to trigger runtime controls, (i.e., send a control message to another an object.)



Table � seq table �120�:  Signal Generator Runtime Control Conditions



Condition Key�Definition��SG_ECTF_SendSignals�CTsg_SendSignals() completed sending its sequence���autonumlgl �	Standard Signal Templates�xe "signal generator resource:signal templates"�

The following table lists the IDs of standard Signal Templates.  These templates are expected to be loaded and activated in an SG resource upon system initialization.



Table � seq table �121�:  Signal Generator Signal Templates



Signal ID�Description�Signal ID�Description��1�DTMF “1”�9�DTMF “9”��2�DTMF “2”�0�DTMF “0”��3�DTMF “3”�*�DTMF “*”��4�DTMF “4”�#�DTMF “#”��5�DTMF “5”�a�DTMF “a”��6�DTMF “6”�b�DTMF “b”��7�DTMF “7”�c�DTMF “c”��8�DTMF “8”�d�DTMF “d”��

�autonumlgl �	Unsolicited Events�xe "signal generator resource:unsolicited events"��xe "event:signal generator resource unsolicited events"�



SigGenerator_ECTF_SendSignals�SendSignals has stopped (as unsolicited event)��Event specific keys�Value Type�Description��Session_ECTF_Qualifier�CTuint�The cause of termination, as listed below��Group_ECTF_RTCTrigger�CTsymbol�The condition which caused the operation to be terminated.  This KVPair is present only if Session_ECTF_Qualifier is set to CT_uintRTC.��Session_ECTF_Error�CTerror�Error codes, as listed in the next section���autonumlgl �	Event Qualifiers

The following table lists values for the key SG_ECTF_Qualifier in events generated by the Signal Detector Resource.



Table � seq table �122�:  Signal Generator Event Qualifiers



Event�Description��CT_uintStandard�Normal termination��CTgrp_uintStop�The function CTgrp_Stop( ) caused the termination��CT_uintRTC�RTC caused the termination��� AUTONUMLGL �15.7.�	Parameters

There are no Signal Generator Resource parameters defined at this time.

�autonumlgl �	Resource Attributes

Resource Attributes are terms used in the Application Profile to specify a Resource’s features.  They correspond to parameters maintained by the Resource in an S.100 server, and are defined to provide the wherewithal for an application to request Resources with appropriate features when creating and configuring a Group.

�autonumlgl �	Signal Generator Attributes

There are no attributes for signal generator resources.

��autonumlgl �	Signal Generator Function Definitions



CTsg_SendSignals�	Send signal��Name:�CTstatus CTsg_SendSignals( Group, SignalList, Rtc, TranInfo, Mode)��Input:�CTgrp_ct�Group�Group object���CTstring�SignalList�List of Signal IDs to send��Output:�None����Standard:�CTkvs_ct�Rtc�Run Time Control object���CTtranInfo*�TranInfo�Transaction Information struct pointer���CTmode�Mode�Mode of operation��Return:�Standard CTstatus values���Description

This function takes a sequence of Signal IDs (ASCIIZ strings), which are names of Signal Templates, and transmits the sequence of corresponding signal waveforms.

This function can execute asynchronously or synchronously and can be terminated upon the occurrence of events (signal or other) by means of runtime control.

Completion Event

In synchronous mode, the output argument tranInfo also contains these KVPairs, and the other output arguments contain the values of their corresponding Keys. In asynchronous mode, the completion event is returned separately, tranInfo returns only the status of the asynchronous call, and the other output arguments are CT_NULL.



SigGenerator_ECTF_SendSignals�Send Signal (completion event)��Event specific keys�Value Type�Description��Message_ECTF_Qualifier�CTuint�Cause of the termination��Group_ECTF_RTCTrigger�CTsymbol�The condition that caused the operation to be terminated.  This key is only present if Session_ECTF_Qualifier is set to CT_uintRTC��Session_ECTF_Error�CTerror�Error codes, as listed below��Cautions

None

Errors

CT_errorBADGROUP	(	Invalid Group Object

CT_errorBADPARM	(	Invalid Parameter in Function Call

CT_errorBADRESOURCE	(	Function Not Supported by this Group

CT_errorBADRTC	(	Invalid Runtime Control Object

CT_errorBUSY	(	Resource is Already Busy

CT_errorSYSTEM	(	System Error

CTsg_errorBADSIGNALID	(	Bad Signal ID

�Appendix A:  Application Profile Specification�xe "application profile" \b�

A.�seq apnum1 \* mergeformat �1�	Application Profile Overview�xe "application profile:overview"�

An Application Profile is a specification for initial and/or default information associated with an application. It is created by an application developer in parallel with the source code of an application, and installed on a system running an S.100 server at the time that the executable image of the application is installed.  Throughout the execution of the application, both the server and the application can refer to the Application Profile for information pertaining to such information as Group configurations, parameter settings, RTCs, and Application Service IDs. Conceptually it may be regarded as an application-specific “ECTF.INI”, “.ectfinit”, or “ECTF system registry subtree” (for enthusiasts of Windows, UNIX, or NT/Win95).

The server associates the Application Profile with an application when it authenticates with the server. Each session created by the application retains this association. References to groupsets, groupconfigs, ASIs, and other identifiers within the application are resolved with respect to their definitions in the Application Profile, and default and initial settings of parameters and configurations are taken from the Application Profile.

A.�seq apnum1 \* mergeformat �2�	Algebra

In many instances in an Application Profile, it is necessary to describe the values that an attribute may (or must) take. Often these values depend on each other, or may be one of several alternatives.  For example, it may be desirable to specify a Recorder that can use any of an explicit list of coding algorithms, or a CCR resource that can handle a T1 or E1 trunk or a particular signalling protocol.

An Attribute Algebra (AA) �xe "application profile:attribute algebra" \b�is used in Application Profile expressions to express combinations of attribute values.  This algebra is designed to allow the Application writer a flexible methodology for specifying the required Resource characteristics and Group configurations in the Application Profile.  

Terms

The algebra consists of terms that are combined by operators.

Different terms are used in different parts of the Application Profile.

Resource Block Terms�xe "application profile:resource block" \b��xe "resource block" \b�

In the Resource Block (a section of the Application Profile that defines resources), a term is a KVPair, i.e., a Symbol (type CTsymbol) and a value (whose type depends on the symbol). It is written in the form

symbol = value

Example:

Player_ECTF_Baud = 9600

Terms may be abbreviated in two different ways.  Firstly, for S.100-defined symbols, where there is no ambiguity, the string “RESOURCE_ECTF_” may be omitted; thus, the above example may be written

Baud = 9600

Secondly, many KVPairs represent attributes (i.e., their type is CTbool).  For those, simply stating the symbol name implies the value CT_boolTRUE.  Thus,

PLAYER_ECTF_Coder = ADPCM

may be abbreviated

ADPCM               Coder=ADPCM

In addition to the above, the term ANY may be used to represent any Key (value?).  Actually, leaving out a key is equivalent to Key = ANY...

Configuration Terms�xe "application profile:configuration" \b��xe "configuration" \b�

In the Configuration Block (a section of the Application Profile that defines Group configurations), a term is a symbolic resource name as defined in the Resource Block.

Operators�xe "application profile:operators"�

The following operators apply to the terms defined in the previous section:



Table � seq table �123�:  Attribute Algebra Operators



a|b�Only a or if not a then only b is required, but not both.  Subexpression a is resolved first.  If a is satisfied, the expression is complete.  If a fails, subexpression b is evaluated.��a+b�Both a and b are required, but not simultaneously.��a&b�Both a and b are required simultaneously.��a,b�Both a and b are required simultaneously.��(...)�Used to resolve ambiguities and precedence or redundantly for expression clarity.��!a�Used to specify that the resource may be allocated implicitly (i.e., the server, if it is able, may delay allocation of the physical resource and associated isochronous channels until actual time of use)��

The order of precedence is ( ... ), !, &, +, |

Certain rules apply to the evaluation of expressions in this algebra, in particular:

a | a, a& a and a + a are all equivalent to a.

a & b is equivalent to b & a. a + b is equivalent to b + a. 

a | b is not equivalent to b | a as ordering is important.

An expression is evaluated by selecting an object (such as a resource) and finding a match between the expression terms and parameters (or characteristics or capabilities) of the resource. If a match can be found, then the expression is satisfied.

A.�seq apnum1 \* mergeformat �3�	Application Profile Contents.

There are several object types that may be defined in an Application Profile.  Some of them are used in the definition of other object types, and any identifiers used to refer to them are global in the Application Profile.

Definitions are grouped into blocks, which are syntactically like basic blocks in C.  The basic blocks are:

Resources Block�xe "resources block"��xe "application profile:resources block"�: defines symbolic names for resources, together with required attribute settings.  The resource identifiers are used in Group configuration expressions.

Configurations Block�xe "configurations block"��xe "application profile:configurations block"�: defines symbolic names for groupconfigs, together with default Group parameter values.  The groupconfigs are defined in terms of the resource identifiers defined in the Resource Block.  The special GroupConfig, ANY, is always defined, implicitly by the system.  When this ConfigName is used in CTgrp_Config(), the Group is not reconfigured.

Groupsets Block�xe "groupsets block"��xe "application profile:groupsets block"�: defines “groupsets”, a collection of configurations.  A groupset is a hint to the server concerning configurations that are likely to be used in the course of a session. Certain APIs allow a groupset to be specified; if it is specified, the server may use the information to optimize resource allocation.

RTC Block�xe "RTC block"��xe "application profile:RTC block"�: defines symbolic RTC conditions and actions, which can then be used in application services to preset RTCs on Groups.

Conferences Block�xe "conferences block"��xe "application profile:conferences block"�: defines symbolic conference settings, which can be used in application services.

Application Services Block�xe "application services block"��xe "application profile:application services block"�: defines Application Service IDs (ASIs) and their associated configurations, parameter settings, RTCs, etc.

The syntax of a block is:

BLOCK_NAME {

<block_expression>*�}

Where BLOCK_NAME is one of

Resources

Configurations

Groupsets

RTC_Definitions

Application_Services

A <block_expression> is an object definition appropriate for a block.  The contents of each block are discussed in the following subsections.

A.�seq apnum1\c \* mergeformat �3�.�seq apnum2 \* mergeformat �1�	Resource Block�xe "resources block" \b��xe "application profile:resources block" \b�

The Application Profile contains one Resource Block.  This block contains statements that define symbolic resource names in terms of attributes and their values, using the form:

<name> = <resource_class> : <attribute_algebra_expression>;

Where <resource_class> is the name of one of the standard S.100 resources (e.g., PLAYER, RECORDER, ASR), <name> is the resource identifier being defined, and <attribute_algebra_expression> is a specification, expressed in the Attribute Algebra defined in the previous section.  The Keys appearing in <name> must be keys that are defined for the resource class.

Example:

RESOURCES = {

       //Call Channel Resource with Spanish E1

       // inbound protocol

	MYCCR = CCR: SPAIN_E1_INBOUND;

       //Player with ADPCM and PCM coders

	MYPLAYER = PLAYER: ADPCM + PCM;

       //ASR with continuous recognition (if

       // available), otherwise discrete recognition

	MYASR = ASR: CONTINUOUS | DISCRETE;

};

Each of the names MYCCR, MYPLAYER, MYASR in the above Resource Block may be used in other definitions in the Application Profile.

A.�seq apnum1\c \* mergeformat �3�.�seq apnum2 \* mergeformat �2�	Configuration Block�xe "configurations block" \b��xe "application profile:configurations block" \b�

The Configuration Block defines a collection of possible Group configurations (groupConfigs).  The defined configurations, which are simply CTstring strings, are used as arguments in those API functions that take groupConfig arguments.  The specification of a Group configuration in the Application Profile allows the server to completely configure a Group without lots of  details from the application.  The ConfigName serves as an abbreviation for the collection of  parameters.

The syntax of a groupConfig is:

<ConfigName> : Primary = <resource-exp> 

	{, Resources = <res-exp>} // optional secondaries

	{, RTC = <RTCname>+}	  // optional RTC spec	

	{, <KVpair>}* ;		  // other KV pairs

				

In the above syntax, <resource-exp> is an attribute algebra expression where the terms are resource names defined in the Resource Block, <RTCname> is an attribute algebra expression where the terms are defined in the RTC Block, and <KVpair> are attribute terms (i.e., Key = value pairs).

Examples:

(In these examples, P1, P2, R3, R4 are defined in a Resource Block somewhere, RTC1 is defined in an RTC Block).

CONFIGURATIONS {

Config1:

	Primary = P1 | P2,

	Resources = R3 + R4,

	RTC = RTC1,

	Key1 = Value, // can specify various other parameters

	Key2 = [v1, v2, v3-v9]	// a value range

		;

Config2 : Primary = R3 ;

Config3 : Primary = P1,

	Resources = R2 | R3;

// you always get this, implicitly:

ANY : Primary = ANY, Resources = ANY ;

}

A.�seq apnum1\c \* mergeformat �3�.�seq apnum2 \* mergeformat �3�	Group Set Block�xe "group set block" \b��xe "application profile:group set block" \b�

A Group Set Block is an optional section of an Application Profile.  When present, and when its definitions are used in API calls, it represents a hint to the S.100 server as to what configurations are expected to be used in the course of execution of an application, so that more optimal resource allocation decisions can be made.

The syntax of a Group Set Block is:

GROUPSETS {�

<Group_set_name> :  <config_name> {, <config_name> ;

...

}

where <Group_set_name> is an identifier, and <config_name> is a Group configuration defined in the Configuration Block.

Example:

	GROUPSETS = {

	

		GS1 : Config1, Config2;

		GS2 : Config1, Config3, Config4;

	}

A.�seq apnum1\c \* mergeformat �3�.�seq apnum2 \* mergeformat �4�	RTC Block�xe "RTC block" \b��xe "application profile:RTC block" \b�

The RTC Block defines Run Time Controls (RTCs) that can be set up by the server.  The syntax of an RTC Block is:

RTC_DEFINITIONS = {

<rtc_name> : <action> = <condition> {, <condition> }

...

}

where <rtc_name> is an identifier, <action> is a Symbol representing a command, and <condition> is a Symbol representing a condition.

Example:

RTC_DEFINITIONS = {

PS1 : Player_ECTF_AStop = CCR_ECTF_TIdle, 

                                              SD_ECTF_TDetect;

	}

A.�seq apnum1\c \* mergeformat �3�.�seq apnum2 \* mergeformat �5�	Application Services Block�xe "application services block" \b��xe "application profile:application services" \b�

The Application Services Block is used to minimize the amount of information required in the application code when registering a service.  This also allows that information to be managed by the system installer or administrator without recompiling the application binary.  The ASI definitions are used and expanded by CTses_RegisterService and the SCR.

Each definition of this block associates configurations, RTC lists, conference objects, and other attribute with an Application Service ID.  

An Application Service definition has the syntax:

<ASIname> : <init_config_exp>, <Group_set_exp>, <KVSet_exp> ;

where <init_config_exp> is

InitConfigName = <configname>

and <Group_set_exp> is

GroupSetName = <groupsetname>

and <KVSet_exp> is

key = value {, key = value }

Example:

	APPLICATION_SERVICES = { 

			ASI-0 :;

			ASI-1 : Foo=1;

			ASI-2 :	InitConfig = Config1, 

				GroupSet = GS2,

				SCR_ECTF_InboundCallState = CTscr_uintAlerting ;

			}

A.�seq apnum1 \* mergeformat �4�	Installation Instructions�xe "installation instructions" \b��xe "application profile:installation instructions" \b�

In addition to the templates, the Application writer must provide the system administrator with a set of installation instructions which describe what the Application does, what it expects in the way of services, and the characteristics of other Applications it expects to interact with.

Specifically, the installation instructions will specify:

the purpose of the Application,

the type of inbound calls it expects to receive,

the type of outbound calls it expects to make,

whether it uses the SCR or not,

the expected use for each of its defined ASIs,

the ASIs it expects to hand off calls to,

the types of Conferences it expects to create,

any special Container access it expects to make,

any special System Service it expects to use.

�Appendix B: Glossary



AGC�Automatic Gain Control:  automatic adjustment of audio volume to account for variations in signal strength.��AIA�Application Interface Adapter: a component providing the client side of a client server connection to an S.100 server.��allocation�The process of obtaining exclusive ownership of hardware underlying a resource along with the isochronous channels through which the transmit and receive data.��ANI�Automatic Number Identification, a service provided by a central office (CO) or customer premises (CP) switch to identify the number from which an incoming call was dialed. It might be used in a routing rule by the SCR to identify to which application the Group associated with the call should be handed.��API�See Application Program Interface.��application class�A Group of client applications that perform similar services, such as voice messaging or fax-back services.��Application Profile�A description of the kinds of resources and services required by a client application (or an application class).  An Application Profile is defined once for an instance of an application; then system services such as the SCR will be able to fulfill the needs of the application without the application having to state its needs explicitly.��Application Program Interface�A functional interface between the client application and the AIA.  This is a set of language specific bindings for a particular language and operating environment.��application service�An application registered with the S.100 server as being capable of responding to messages sent from other applications and sending responses to them.��Application Service ID (ASI)�A string-valued token provided by an application. It is used by the server and applications to specify the application to which a group is to be handed off, and by an application to identify itself for purposes of handoff.��ASI�Application Service ID (see definition).��ASR�Automatic Speech Recognition (see definition), or Automatic Speech Recognizer (see definition)��ASR training�A procedure provided by an ASR system for collecting speech samples from one or more speakers and using it to adjust its internal recognition algorithm so as to perform recognition better.��asynchronous request�A request where the client does not wait for completion of the request, but does intend to accept results later.  Contrast with synchronous request.��automatic speech recognition (ASR)�Technology for recognizing utterances (e.g., words, phrases) from human speech.��automatic speech recogizer (ASR)�Generally, a device capable of performing automatic speech recognition; in an S.100 server, a resource that can perform ASR and that may be added into a Group.��bearer channel�In general terms, a data path in a telecommunications system over which voice and data are transmitted. In digital telephony (e.g., ISDN, SS7), it refers to a datapath with specific data rates and other characteristics that are part of a Basic Rate Interface or Primary Rate Interface.��Binary File Transfer�BFT or Binary File Transfer is a standard method by which a binary file can be encoded with its attributes into a structure for transfer via communications protocols.  Binary File Transfer is an optional feature of Group 3 facsimile devices.  ��CCR�Call Channel Resource (see definition)��call�Two or more parties connected together for the purpose of communication.  A party may be either a person or a client application, each respectively directing a Group or telephone terminal equipment (phone, fax, etc.)��Call Channel Resource (CCR)�An S.100 resource that represents the data stream of a network interface in a Group.��call control�The electronic signaling functions that control the setting up, monitoring, and tearing down of telephone calls.  First-party call control is the view of directly controlling a telephone set; third-party call control takes the view of controlling the call through a switch (PBX) in a centralized fashion.  Generally third-party call control also refers to the control of other functions that relate to the switch at large, such as ACD queuing, etc.��call data stream�See data stream.��client�Any object that uses the resources of another object.��client application�Any computer program making use of the processing resources of another program.��client operating system�Operating System running on the client.��completion event�An event generated by the S.100 server in response to a command (i.e., a client application function call) by a client.��configuration�The process of identifying the resources that belong in a Group and the various attributes and settings that must be established when they are used. A Group Configuration is a specification in the Application Profile of an application-defined configuration.��connection�A TDM data path between two Resources or two Groups.  It connects the inputs and outputs of the two Resources, and may be unidirectional (simplex) if either of the Resources has only an input or an output; otherwise it is bi-directional (dual simplex).  It usually has a bandwidth that is a multiple of a DS0 (64kbit) channel.  Inter-Group connections are made between the Primary Resource of each Resource Group.��consultation call�In a call conferencing or call transfer service, an intermediate call made by one of the two parties in a current call to a third party. The third party (the consulted party) may have the original call transferred to him/her, or be added to a conference call.��CTI�Computer-Telephone Integration, a group of technologies that permit telephones and computers to be used in a coordinated fashion by an end user.��CTI Link�A link between a computer and a switch (e.g., a central office switch or a PBX) over which an application running on the computer, by using an appropriate protocol, can invoke services and receive event notifications from the switch.��data stream�The data transmitted over a telecommunications trunk, a bearer channel, or other isochronous channel in a telecommunications network..��Digital voice coding�Technology by which linear audio (voice) samples are collected and then compressed using an encoding algorithm.  Typically used to store voice data for future decoding.��DNIS�Dialed Number Identification Service, a service provided by a central office (CO) or customer premises (CP) switch that identifies the number dialed on an incoming call. The DNIS number might be used by an SCR routing rule to determine to which application the Group associated with this call should be handed. ��Error Correction Mode�ECM or Error Correction Mode is an optional feature of Group 3 facsimile devices which permits the error free transfer of image or binary files (See Binary File Transfer) via facsimile.  ��event�A message that reports on a change in the status of an object. See also completion event, general event, unsolicited event.��First party call control�See call control.��general event�An event arising from an external occurrence (e.g., a hangup on a trunk), an error or some other source. It is distinguished from completion event, which occurs specifically because a command was issued by a client. Also called unsolicited event.��glare�The condition in which a trunk selected for an outbound call is discovered to have an arriving call.��Group�An associated set of one or more Resource Objects. Groups encapsulate the functionality of the Resource Objects that are associated with them. Resource Objects within a Group have defined connectivity.  The Group provides three services to the application:  implicit management of connectivity between Group members; representation of a single entity to the applications (Group ID); and reservation of all physical resources (CPU, memory, time slots) required to provide the application with exclusive use of configured resources.��Group Configuration�In the Application profile, a specification of a collection of secondary resources to be associated with a primary resource and with an ASI. Such a group configuration can be referred to by an application in requests to the server to configure a group as defined by the specification.��Group Set�In the Application Profile, a specification of a set of Group Configurations which share a common primary resource. The Group Set represents a description of all the configurations that the application expects to use with a particular Primary Resource, thus allowing the server to (potentially) optimize its resource allocation strategy.��handoff�The change of ownership of a Group (and therefore, typically, a call) from one session to another.  For example, if a call center application discovers that a caller wishes to access a technical support audiotex database, it hands off the call to an application servicing that database.��isochronous�“Equal-time”, denotes data that arrives at precise periodic time intervals. MVIP, PEB, or SCbus timeslots carry isochronous data.��isochronous channel�General term applied to MVIP/PEB/SCbus timeslots, ATM circuits, ISDN bearer channels, etc., to refer to a channel (using any technology) that delivers isochronous data.��Key Value Pair (KVPair)�An S.100 data structure used to communicate or store a piece of information. A KVPair consists of a Key, whose value is an S.100 Symbol, and a value, which may be any of a variety of data types, including a KVSet (thus making the structure recursive). The Key is used to identify the meaning of the data contained in the value.��Key Value Set (KVSet)�An S.100 data structure used to communicate or store general information in the S.100 system. A KVSet is a set of KVPairs.��MAPI�Messaging API (see definition)��Messaging Application Programming Interface�An API created by Microsoft for developing messaging applications.��method�The specific implementation of an operation for a class; code that can be executed in response to a request.��Object Status Update�An event generated by an object to inform an application that the value of some parameter has changed. The application uses the OSU interface functions to register interest in the changes of a particular parameter.��OSU�Object Status Update��ownership stack�The conceptual data structure in which the various owners of a Group (from Group creation to current) as it is handed off between owning applications.��PBX (or PABX)�Private Branch Exchange, a telecommunications switch designed to be located on customer premises and maintained by the customer.��parameter�An object in an S.100 server, possessing a name (represented by a symbol) and a value. A parameter is “owned” by some component of the server or by a resource, and its value is used to control some mode of its operation. Client applications can obtain the value of all parameter, and may set the value of some parameters.��playback�Retrieval, decoding and transmission of encoded data.��Player�A resource object that plays TVM data.  The audio data can come from a voice or audio encoded file, or from text that has passed through a text-to-speech service.  The output of a player can be analog audio, TDD, ADSI, etc. ��POTS�“Plain Old Telephone Service”, AT&T jargon for the traditional service offered to consumers by the Bell System for decades. Computer telephony is the extreme antonym to POTS.��Primary resource�The main resource around which a Group is constructed.  Typically, the primary resource will be an interface to the telephone network, but it may also be a switch port.��record�The sampling, encoding and storage of data.��remotely-hosted�The Client and the Server are different (i.e., the application is on a different physical box than the service provider).��reply�An event which is a service providers response to a synchronous or asynchronous request.��request�A request for service from an object to a service provider.��Resource�The abstraction of a standardized vendor-independent interface of a physical device used for call processing as seen  by the Application.  All Resources have common methods across all implementations.  Examples of Resources are voice store and forward, fax send and receive, text to speech conversion, voice recognition, etc.  Resources are assumed to have at a minimum one input or output of circuit switched TDM on the internal switch fabric of the system.  Resources are shared among multiple applications. Once a Resource has been allocated to an application it is locked from the use of any other application until freed.  It is assumed that applications specify at some level their resource requirements to the server prior to accessing them.   This may either be through explicitly attaching them to a Group, or having the server implicitly allocate them based on usage.��Resource Class�A set of methods (in object-oriented terms, a class) for controlling  resource instances (or a resource). May be abbreviated as just “class.”��Resource Object�An instance of a Resource Class.��Routing Rules�Rules installed and administered by the Server System Administrator and used by the SCR to determine how to select an application and associated Group to process a call. The exact representation of the rules is vendor-dependent (at this stage), and may include such features as time of day, DNIS, ANI.��RTC�See Runtime Control.��Runtime Control�The mechanism by which one Resource Object can influence the behavior of another.  Typically used for things such as terminating conditions and speed/volume control.  Runtime Control is often abbreviated RTC.��Runtime Control Action�An action, specified in an RTC by a symbol, to be taken by a resource in response to a Runtime Control Condition. Each resource defines the specific set of Runtime Control Actions of which it is capable.��Runtime Control Condition�An occurrence, specified in an RTC by a symbol, to which a resource and the server are to respond by causing a Runtime Control Action to occur. Each resource defines the specific set of Runtime Control Conditions which it is capable of detecting.��S.100 server�A collection of service providers (objects) which in the aggregate implement the minimum set of services required for S.100 system conformance.  The assumption is that these services are at a minimum provided to remote-hosted client applications via common transports such as LANs, but may also be provided to client applications which are hosted on the S.100 server itself (see Self-hosted).  Note that this is a logical image which may be implemented through multiple nodes (machines).��SCR�See System Call Router��System Call Router� A service for providing as a unified interface to the application a combination of basic call control and group management (through initial group creation and initial group routing)��sdk�Software Development Kit��Secondary resource�Any resource that is attached to a Group after the Group has been created around a primary resource.��self-hosted�The Client and the Server are on the same computer platform.  A server with one or more self-hosted applications may be a standalone unit which is not connected to any other system.��Server operating system�Operating System running on the S.100 Server.��service provider�An addressable entity providing application and administrative support to the client environment by responding to client requests and maintaining the operational integrity of the server..��Service Provider Interface (SPI)�For the S.100 specification, the interface that is presented by a resource to an S.100 server (the ECTF SPI is being defined by an ECTF Technical Group). For Microsoft, the interface presented by a vendor-supplied component in a WOSA-compliant system.��session�An association (on some underlying communication network) between an S.100 server and a client application. During the session the client creates Groups (or has Groups handed to it), uses the Group to perform media and call control operations, and then destroys (or hands off) the Group.��Signal Detector�An S.100 Resource, which listens to a data stream and recognizes DTMF tones.��Signal Generator�An S.100 Resource, which generates DTMF tones on a data stream.��Spatial Media�Objects which are spatial in nature and whose data content may be divided into spatial units such as pages.  (for example, fax images or binary files). ��speech recognizer�See automatic speech recognizer.��speech verifier�A device that compares a known sample of speech with a new sample provided by a speaker to determine whether the same speaker produced both samples.��spp�See Signal Processing Platform��state�The instantaneous properties of an object that characterize that object’s current condition.��Switch Port�A resource that allows a Group to communicate with another Group.  All Groups implicitly possess a Switch Port as a secondary resource, but in order to use it, the application must explicitly connect the Switch Ports of two Groups.��Symbol (or CTSymbol)�An enumerated constant type whose values are controlled and unique across S.100 client and server processes. They are used as identifiers for information exchanged by multiple components of an S.100 system.��synchronous request�A request where the client blocks until the completion of the request. Contrast with asynchronous request .��System Service Provider�An entity that provides system-wide services, such as session management and security, and the allocation and tracking of resources and Groups.��System vendor�A provider of a complete S.100 server.��T.30�ITU-T Recommendation T.30 - Procedures for Document Facsimile Transmission in the General Switched Telephone Network, the standard followed by the S.100 Fax resource.��T.611�ITU-T Recommendation T.611- Programming Communication Interface (PCI) APPLI/COM for facsimile Group 3, facsimile Group 4, teletex, telex, e-mail and file transfer services, the standard followed by the S.100 Fax system service.��TAPI�Telephony API (see definition)��TDD�Task Data Descriptor (for T.611 Fax System Service), a data structure defined for Fax services.��TDM�Time-division multiplex.  This is the means whereby a single electric circuit may be used by multiple devices:  use of the circuit is divided into “time slots” which are allocated to the contending devices in a rotating fashion.  Each device gets exclusive use of the circuit for the duration of its time slot.��Telephony API (TAPI)�An API developed by Microsoft for enabling telephony applications in a WIN16/WIN32 environment. It is a WOSA architecture component, interoperating with a TSPI-compliant Telephony Service Provider.��Telephony Service Provider�(TSP); a software encapsulation of all the services provided by a particular network interface device or line device.  A line device may be a single POTS bearer channel or it may be several bearer channels; for example, a single E1 span with 30 network channels of 64  Kb/s bandwidth.  The TSP is provided be the vendor who has developed a network interface device for S.100. A TSP may provide a number of different interfaces, of which the best known is TSPI.��Telephony Services API (TSAPI)�An API developed by AT&T and Novell to enable call control applications under Unix, Unixware and Netware for a server/PBX environment. The API is compliant with the CSTA protocol (ECMA-179, ECMA-180, ECMA-217, ECMA-218).��TR-29�The FAX standards committee of the U.S., and the author of the TIA/578-A (Class 1) and TIA/592 (Class 2) standards.��TranInfo�A data structure used as an argument in S.100 API functions to return error, status, and other information. In functions called in synchronous mode, the TranInfo contains the completion event issued by the S.100 server after performing the function.��Trunk�A communication line between two switching systems. A trunk in this present specification refers to the communication line that terminates at a network interface (which is subsequently managed by a CCR).��Trunk ID�An identifier for a trunk known to an S.100 server.��TSPI�Telephony Service Provider Interface - in general terms, the interface exported by a TSP, but most frequently used to denote the Microsoft-defined Telephony Service Provider Interface that interoperates with TAPI.��Third party Call Control�See Call Control.��TSP�Telephony Service Provider (see definition)��Time-Varying Media�Time-varying media, such as audio data (as opposed to space-varying media, such as image data).��tone�An audio signal consisting of one or more superimposed amplitude modulated frequencies with a distinct cadence and duration.��tone set�A collection of tones which are customarily used as a set for the purposes of call setup and teardown (e.g., DTMF, R1 MF, R2 MF).  In the case of DTMF, the tone set can also be used by the Client Application during the conversation portion of a call.��TSAPI�Telephony Services API (see definition)��TSP�See Telephony Service Provider.��TVM�See Time-Varying Media.��TVM object�An encapsulation of an atomic piece of time-varying media.  This encapsulation may be the data itself or a reference to the data.��unsolicited event�An event arising from an external occurrence (e.g., a hangup on a trunk), an error or some other source. It is distinguished from completion event, which occurs specifically because a command was issued by a client. Also called general event.��voice data�Encoded audio data.��VRU�Voice Response Unit.  A computer containing Voice processing resources and one or more applications.��Windows Open Services Architecture�An architecture developed by Microsoft for allowing vendor-specific technology implementations to use a common API. A WOSA-compliant system typically has a Microsoft-defined API that interoperates with one or more vendor-provided Service Providers that export a Microsoft -defined Service Provider Interface. Examples of WOSA-compliant technologies include TAPI and WINSOCK.��WOSA�Windows Open Services Architecture (see definition)���

Appendix C: Contributions and Acknowledgements



ECTF Contributions:



Number�Description�Company��95-001�SCSA/TAO 3.5 Specification�Dialogic��95-009�Multi-Vendor Integration Protocols�GO-MVIP, Reference��95-016�MVIP Connection Control - Overview�GO-MVIP, Reference��95-017�Distributed Computer Telephony Architecture�Natural Micro Systems��

Acknowledgements:

This document was made possible through the efforts of the following companies:

Active Voice, Amteva, AT&T, Bolt Beranek & Newman, Brite Voice, Centigram, CSELT, Database Network Systems, Dialogic, Digital Equipment Corporation, Ericsson, Global Communications, Hewlett-Packard Corporation, Human Communications, Intervoice, Lernout & Hauspie, Mitel, Natural Microsystems, Nortel, Qitel, Siemens, Spectrafax, Voice Control Systems, Voice Processing Corporation, VoiceTek, WordPerfect Corporation.



�Appendix D: Bibliography





Ref�Description��� SEQ rn \* MERGEFORMAT �1��Dialogic Corporation, SCSA TAO Framework “C” Language Application Programming Interface Specification, Version 3.0, November 1994 (05-0277-002)��� SEQ rn \* MERGEFORMAT �2��Dialogic Corporation, SCSA TAO Framework “C” Language Application Programming Interface Specification Version 3.0 Call Control Supplement, November 1994.��� SEQ rn \* MERGEFORMAT �3��"Bellcore LATA Switching Systems Generic Requirements (LSSGR): Signaling", Section 6, Issue 2, Revision 1, December 1988 (TR-TSY-000506)��� SEQ rn \* MERGEFORMAT �4��"Telephone Network and ISDN - Operation, Numbering, Routing and Mobile Service", CCITT, Blue Book Volume II, Fascicle II.2, Recommendations E.100-E.333, Study Group II, November 1988 (ISBN 92-61-03261-3)��� SEQ rn \* MERGEFORMAT �5��ITU-T Recommendation T.30 (1993) - Procedures for Document Facsimile Transmission in the General Switched Telephone Network; International Telecommunications Union��� SEQ rn \* MERGEFORMAT �6��”ITU-T Recommendation T.611(1994) - Programming Communication Interface (PCI) APPLI/COM for facsimile Group 3, facsimile Group 4, teletex, telex, e-mail and file transfer services (1994)”, Final Draft, June 29, 1994; ITU (CCITT)��� SEQ rn \* MERGEFORMAT �7��ECMA TC32/TG11, Computer Supported Telecommunications Applications, 1st Edition, June 1990 (ECMA TR/52)��� SEQ rn \* MERGEFORMAT �8��ECMA TC32/TG11, Services for Computer Supported Telecommunications Applications (CSTA)Phase I, 1992 (ECMA-179).��� SEQ rn \* MERGEFORMAT �9��ECMA TC32/TG11, Protocol for Computer Supported Telecommunications Applications (CSTA) Phase I, 1992 (ECMA-180)��� SEQ rn \* MERGEFORMAT �10��ECMA TC32/TG11, Services for Computer Supported Telecommunications Applications (CSTA), Phase II, December 1994 (ECMA-217)��� SEQ rn \* MERGEFORMAT �11��ECMA TC32/TG11, Protocol for Computer Supported Telecommunications Applications (CSTA) Phase II, January 1995 (ECMA-218).��� SEQ rn \* MERGEFORMAT �12��ECMA TC32/TG11, Protocol for Computer Supported Telecommunications Applications (CSTA) Phase III, July 1995 (ECMA-XXX).��� SEQ rn \* MERGEFORMAT �13��ECMA TC32/TG11, Technical Report on CSTA Scenarios, Third Draft, July 1994 (ECMA TC32-TG11/94/158).��� SEQ rn \* MERGEFORMAT �14��ECMA TC32-TG11, Technical Report on CSTA Scenarios, Fourth Draft, October 1994.��� SEQ rn \* MERGEFORMAT �15��Aculab Ltd., "Software Functional Specification for a Generic Call Control Driver Interface", Version 1.7, Sept 1993.��� SEQ rn \* MERGEFORMAT �16��"Common-ISDN-API (CAPI)", Version 2.0, First Edition, February 1994, Common-ISDN-API Working Group.��� SEQ rn \* MERGEFORMAT �17��Dialogic Corporation,"Interface Control API Specification", 1993��� SEQ rn \* MERGEFORMAT �18��Digital Equipment Corp.,  "DEC CIT Applications Interface for VMS Programming Reference", Order Number AA-PK5RA-TE.��� SEQ rn \* MERGEFORMAT �19��IBM, "CallPath Services Programmer's Reference", GC31-6824-02  3rd edition, Sept 1992��� SEQ rn \* MERGEFORMAT �20��Microsoft Corporation, Microsoft Windows Version 3.1  Telephony Programmer's Guide, Version 1.0 1993.��� SEQ rn \* MERGEFORMAT �21��Microsoft Corporation, Microsoft Windows Version 3.1 Telephony Service Provider Programmer’s Guide Version 1.0, 1993.��� SEQ rn \* MERGEFORMAT �22��Microsoft Corporation, Speech API SDK: Microsoft Speech API, Version 1.0, 1995.���Speech Recognition API Committee, SRAPI, Speech Recognition API, Release 1.0, November, 1995.��� SEQ rn \* MERGEFORMAT �23��AT&T, Telephony Server Application Programming Interface (TSAPI), Issue 1.9, 1994 (Novell document number 100-002046-002).��� SEQ rn \* MERGEFORMAT �24��Sun Microsystems, Inc.,  "XTEL Application Programmers Guide", EDR2 (Preliminary Draft), Dec 1993��� SEQ rn \* MERGEFORMAT �25��Voice Technologies Group, Inc., "VoiceBridge-PC Product Specification", Version 0.6 (DRAFT), Jan 1994.��� SEQ rn \* MERGEFORMAT �26��Peter Blatherwick, Dave Coleman, George Hart, Christina Hattingh, Mark Li, “NORTEL Interoperability Issues for the ECTF”, ECTF Contribution 95-004.��� SEQ rn \* MERGEFORMAT �27��Mike Katz, Brough Turner, “Multi-Vendor Integration Protocols Reference”, ECTF Contribution 95-009, October 1995.��� SEQ rn \* MERGEFORMAT �28��Robb Flegg, Wayne Reed, “MVIP Connection Control - Overview” ECTF Contribution 95-016, October 27, 1995.��� SEQ rn \* MERGEFORMAT �29��Skip Cave, Eric Weeren (InterVoice), Brough Turner, George Kantopodis, Mike Katz (Natural Microsystems), Jeff Peck, Charlie Walden (Dialogic), Rebecca Moore (Centigram), Gary Jaspersohn (VoiceTek), Tony Niro (Mitel), Ann Childs (Novell), “Distributed Computer Telephony Architecture”, ECTF Contribution 95-017.��� SEQ rn \* MERGEFORMAT �30��Art Sullivan, “ECTF Proposal to Introduce a Client/Server Message Standard”, ECTF Contribution 95-019, 11/3/95.��� SEQ rn \* MERGEFORMAT �31��Art Sullivan, “ECTF Proposal to Change API in regards to Run Time Control”, ECTF-20, 11/3/95.��

�Index



� INDEX \h "—A—" \c "2" ��—A—

action, 15

advertising count, 149

API

argument ordering, 31

conventions, 26

exceptions, 74

extensions, 35

future S.100 APIs, 21

generic API function prototype, 31

object handle, 32

parameter list, 32

pointers and handles, 33

summary list, 20

units, 33

application installation instructions, 14

Application Interface Adaptor, 6

Application Profile, 5, 13, 111, 386

application installation instructions, 14

application service block, 14

application services, 391

application services block, 388

attribute algebra, 386

conferences block, 14, 388

configuration, 387

configurations block, 388, 389

group configuration block, 14

group set block, 14, 390

groupsets block, 388

installation instructions, 391

operators, 387

overview, 386

parameter and RTC specification, 14

resource block, 14, 386

resources block, 388, 389

RTC block, 388, 390

session block, 14

application service, 8

application service block, 14

Application Service ID, 6, 8, 18, 149, 150

application services block, 388, 391

Application strategies, 22

argument ordering, 31

arrays and strings, 40

ASI. See Application Service ID. see Application Service ID

ASR. see Automatic speech recognition

capabilities, 297

ASR capabilities, 297

ASR limitations, 297

ASR Recognizer, 300

ASR resource, 19, 297

asynchronous mode, 7

automatic speech recognition, 297

context, 300

context container, 302

context control parameters, 309, 310

context grammars, 301

context vocabularies, 301

grammar, 298

limitations, 297

multiple contexts, 303

output control parameters, 309, 311

output parameters, 309, 312

overview, 299

phrase list grammars, 301

recognition states, 304

Recognizer, 300

resource parameters, 309

resource states, 304

RTC control parameters, 309

runtime control action parameters, 313

speaker identification, 297, 303

speaker verification, 297, 303

speech buffer control parameters, 309, 313

speech input control parameters, 309, 311

speech recognition, 297

speech recognition command language, 302

SRAPI, 301

technology identification parameters, 309, 310

training, 305

training control parameters, 309, 313

vendor parameters, 309

vendor specific grammars, 302

vendor tag parameters, 309

automatic speechrecognition

unsolicited events, 315

—B—

backing up Containers, 195

backing up Data Objects, 195

blind transfer, 151

blocking, 166

Blocking Algorithm, 13

—C—

C language guidelines, 29

Call Channel Resource, 16, 19, 288

call length, 291

device name, 291

extensions, 291

resource state, 291

service provider ID, 291

unsolicited events, 291

call control, 16

call management, 18

CAPI, 16

CCR programming model, 290

CSTA, 16

CTI link, 289

first party, 16

in the S.100 Server environment, 289

inbound call routing, 18

network interface device, 290

outbound call routing, 18

provider type, 290

Signalling System 7 (SS7), 16

System Call Router, 148

TAPI, 16, 288, 289

telephony model, 288

Telephony Service Provider, 16

third party, 16

TSAPI, 16, 288, 289

call management, 18

CAPI, 16

CCR. see Call Channel Resource

Class data type names, 29

class member function names, 30

client handle, 39

coder types, 340, 353

completion event, 6, 71

concurrency

fax resource concurrency rules, 248

inter-application resource contention, 13

intra-application resource contention, 13

primary resource access contention, 13

resource, 12

server, 12

condition, 15

conference, 166

conference bridge, 167

conferences block, 14, 388

configuration, 387

configurations block, 388, 389

connection, 166

bandwidth, 167

conference bridge, 167

conference connection, 166

conferencing multiple groups, 169

connecting groups, 168

disconnecting groups, 168

inter-group connection, 166, 167

monitor connection, 166, 167

monitoring group connection, 168

muting Group connection, 168

Connection management, 10

connection/conferencing

overview, 166

connection/conferencing management, 165

constant names, 29

consultation call, 151

container, 191, 243

backing up, 195

concatenated and indirect spatial media, 262

container data types, 191

file objects, 193

fully qualified data object names, 194

names, 193

native client files, 195

object types, 193

overview, 192

reference data objects, 194

reserved container names, 194

spatial media objects, 193

temporary containers, 194

time varying media, 340

time varying media objects, 193

container management, 19, 191

Containers

unique names, 192

context, 300

context control parameters, 309

context grammars, 301

context vocabularies, 301

controlled resource, 15

controlling resource, 15

CSTA, 16

CTI link, 151

CTses_WaitEvent, 7

CTstring, 40

CTsymbol, 38

CTtime, 37

CTtranInfo, 77. see transaction information

—D—

data location independence, 34

data objects, 191

backing up, 195

unique names, 192

data storage management, 34

data structures, 36

data types, 36

arrays and strings, 40

CTerror, 38

CTstatus, 38

CTstring, 40

fixed-length types, 39

scalar data types, 36

time, 37

direct call control, 22

drop-and-insert, 23

dynamic resource allocation, 11, 12

—E—

error codes, 44

errors, 74

event, 67

ASR unsolicited events, 315

attributes, 71

completion, 6

completion event, 34, 71

event documentation convention, 73

event handler, 71

event processing overview, 74

event-specific information, 72

fax resource unsolicited events, 262

general event, 71

group handoff events, 115

multi-thread issues, 75

overview, 70

player resource unsolicited events, 348

recorder resource unsolicited events, 351

signal detector unsolicited events, 374

signal generator resource unsolicited events, 382

unsolicited, 7

unsolicited event, 71

unsolicited group events, 118

unsolicited session events, 81

event attributes, 71

event handler, 6, 7, 71, 76

matching criteria, 76

using event handlers, 74

event management services, 70

Events

call channel resource unsolicited events, 291

standard attributes, 71

exceptions, 74

explicit resource allocation, 11, 12

—F—

Fax resource, 242

fax headers and footers, 255

fax resource functions, 242

headers and footers, 250

high and low level functions, 243

interaction with other resources, 244

low level fax resource, 254

overview, 243

parameter hierarchy, 244

runtime control, 247

spatial media, 243, 258

states, 245, 246

fax resource concurrency rules, 248

Fax system service, 19

management, 223

overview, 219

sample sequence, 221

T.611 application, 223

T.611 comparison, 223

Task Data Description (TDD), 220

TDD group, 220

FAX system services, 219

file objects, 193

first party call control, 16

first talker, 166

First Talker Algorithm, 13

fixed length types, 39

flayer function, 361

Function details

flayer function, 361

Player function, 357, 359

recorder function, 363

functions

ASR resource functions, 298

conferencing functions, 165

connecting and monitoring functions, 165

container functions, 191

CTasr_RetrieveRecognition(), 303, 305

CTasr_StartRecognition(), 304, 305

CTasr_WordCommitt(), 306

CTasr_WordTrain(), 306

CTconf_Create(), 169

CTconf_SetParameters(), 169

CTconn_Break(), 168, 169

CTconn_Create(), 168, 169

CTconn_Destroy(), 168, 169

CTconn_Make(), 168, 169

CTcont_SetParameterValues(), 243

CTfaxhl_Receive(), 248

CTfaxhlSend(), 248

CTfaxll_BeginNegotiate(), 248

CTfaxll_Init(), 255

CTfaxll_SendPage(), 248

CTgrp_Allocate(), 12

CTgrp_Configure(), 10, 12

CTgrp_Create(), 12, 290

CTgrp_Deallocate(), 12

CTgrp_Destroy(), 12

CTgrp_GetParameterNames(), 249, 253, 255

CTgrp_GetParameterRange(), 41

CTgrp_GetParameterRanges(), 249, 253, 255

CTgrp_Getparameters(), 249, 290

CTgrp_SetParameters, 339

CTgrp_SetParameters(), 249, 300

CTgrp_SetRTC(), 15

CTkvs_Get[typ](), 42

CTkvs_Get[typ]Array(), 42

CTkvs_GetType(), 41

CTplyr_Play(), 34, 339

CTrcdr_Record(), 339

CTscr_AnswerCall(), 149

CTscr_MakeCall(), 150

CTscr_MakeConsultationCall(), 151

CTscr_RequestGroup(), 149

CTscr_Transfer, 150

CTscr_TransferCall(), 151

CTsd_RetrieveSignals(), 369, 370

CTses_FindService(), 78

CTses_OSU(), 79

CTses_RegisterService(), 78

CTses_SendMessage(), 35

CTses_WaitEvent(), 7

CTsg_SendSignals(), 381

error return value, 74

Fax system services functions, 219

group function definitions, 121

group management function summary, 108

normal return value, 73

player resource functions, 339

recorder resource functions, 339

return value, 73

session function definitions, 83

signal detector resource functions, 365

signal generator resource functions, 381

StartRecognition(), 304

System Call Router function summary, 152

warning return value, 73

—G—

general event, 71

glare, 18

grammar, 298

group, 6, 26, 34

and application profiles, 112

and OSU, 116

conferencing, 165

conferencing multiple groups, 169

connecting groups, 168

disconnecting groups, 168

group allocation, 110

group configuration, 110

group creation, 111

group handoff event, 115

group parameters, 117

group retrieval, 116

group structure, 109

handoff, 114

inter-group connection, 167

monitoring group connection, 168

muting connection, 168

ownership, 114

return tag, 114

runtime control, 113

switch port, 10

typical configurations, 22

group allocation, 110

group call, 18

group configuration, 6, 10, 110

group configuration block, 14

group hand-off, 18, 19

group handoff, 151

group management, 9, 108

group set block, 14, 390

group structure, 109

Groups

interconnection, 165

groups and resources, 8

groupsets block, 388

—H—

handle, 38, 39

server handle, 39

handoff, 114

—I—

implicit resource allocation, 11, 12

inbound call handling, 148

installation instructions, 391

inter-application resource contention, 13

intra-application resource contention, 13

—K—

key, 41

key value pair, 36, 41

key value set, 36, 41

functions, 42

key, 36

keys, 41

value, 36

Key Value Sets

function summary, 42

Key Value Sets function summary, 42

KVPair. see key value pair

KVSet. see key value set

—L—

Last Talker Algorithm, 13, 166

—M—

matching criteria, 76

messages, 34

mode

asynchronous, 7

synchronous, 7

synchronous mode, 75

monitor, 166

monitor connection, 167

monitoring configurations, 25

Motivating Example, 5

multiple servers/clients, 7

multi-thread issues, 75

—N—

naming conventions, 29

Class data type names, 29

class member function names, 30

constant names, 29

container names, 30

Data Object names, 30

object name lists, 31

simple data type names, 29

symbol names, 30

native client files, 195

network interface device, 288

normal status, 73

—O—

object handle, 32, 38

object segment, 26

Object Status Update, 116

Object Status Update (OSU), 78

OSU. see Object Status Update

outbound call handling, 150

outbound routing, 18

output control parameters, 309

output parameters, 309

—P—

parameter, 5

parameter list, 32

ParmList. see parameter list

pattern, 371

Player function, 357, 359

player resource, 19, 339, 340

Coder types, 340

overview, 339

player states, 341

unsolicited events, 348

pointers and handles, 33

polling, 7

POSIX 1003.1, 37

pre-emption, 166

Pre-emption Algorithm, 13

Primary and Secondary Resources, 9

primary resource, 9

primary resource access contention, 13

programming language independence, 33

—R—

Recorder

Coder types, 340

recorder states, 341

recorder function, 363

recorder resource, 19, 339, 341

overview, 339

recorder states, 341

unsolicited events, 351

reference rata rbjects, 194

reserved container names, 194

resource, 8

ASR resource, 19, 297

call channel resource, 19, 288

call channel resource programming model, 290

class, 8

commands and APIs, 111

Fax resource, 242

player resource, 19, 339, 340

primary, 9

primary resource, 166

recorder resource, 19, 339, 341

run-time FAX resource, 19

secondary, 9

secondary resource, 166

signal detector resource, 19, 365

signal generator resource, 19, 381

resource allocation, 11

dynamic, 11, 12

explicit, 11, 12

implicit, 11, 12

static, 11, 12

resource block, 14, 386

Resource Groups. See Groups

resource objects, 108

resources block, 388, 389

return tag, 114

routing rules, 6, 17, 18

RTC, 15. see runtime control

RTC block, 388, 390

RTC control parameters, 309

runtime control, 6, 15, 247

action, 15

condition, 15

controlled resource, 15

controlling resource, 15

importing RTCs, 79

nonpersistent, 15

persistent, 15

run-time FAX resource, 19

—S—

S.100, 5

APIs, 20

Application strategies, 22

C language API conventions, 26

C language guidelines, 29

call control, 289

data types, 36

media (data stream) control, 289

naming conventions, 29

Overview, 5

symbols, 26

scalar data types, 36

SCR call transfer, 150

secondary resource, 9

Security, 7

server handle, 39

Service Registration, 8

services

application provided services, 78

call control, 16

connection management, 10

connection/conferencing management, 165

container management, 19, 191

event management services, 70

Fax system service, 19

FAX system services, 219

group management, 9, 108

resource allocation, 11

security, 7

service registration, 8

session management, 6, 67

System Call Router, 17

System Call Router (SCR), 148

Session, 6, 67

session block, 14

session management, 6, 67

authentication, 70

function summary, 68

overview, 69

session creation and destruction, 69

session parameters, 70

transactions, 70

signal detector resource, 19, 365

asynchronous signal notification, 367

pattern, 371

pattern match notification, 368

pattern termination, 370

signal count termination, 369

signal filtering, 370

signal templates, 376

single signal notification, 368

time-out termination, 369

unsolicited events, 374

signal generator resource, 19, 381

overview, 381

signal templates, 382

unsolicited events, 382

signal ID, 365

signal template, 365

Signal Templates, 381

Signalling System 7 (SS7), 16

simple data type names, 29

SM. see spatial media objects

spatial media, 243, 258

concatenated and indirect, 262

spatial media objects, 193

speaker identification, 297

speaker verification, 297

speech buffer control parameters, 309

speech input control parameters, 309

speech recognition, 297

SRAPI, 301

SRCL. see automatic speech recognition

standard object and vendor names, 28

static resource allocation, 11, 12

status value, 73

switch fabric, 151, 288

Switch Port, 166, 167

bandwidth, 166

symbol names, 26

symbol values, 26

symbols, 26

CTsymbol, 38

extending symbol names, 27

generating new symbol names, 27

item segment, 26

names, 26

object segment, 26

symbol names, 30

symbol structure, 28

values, 26

vendor segment, 26

synchronous mode, 7, 75

System Call Router, 6, 8, 17, 148, 290

call transfer, 150

group hand-off, 18, 19, 151

inbound call handling, 148

outbound call handling, 150

outbound call routing, 18

outbound routing, 18

overview, 148

routing rules, 18

—T—

T.611, 219

TAPI, 16, 288, 289

Task Data Descriptions, 220

TDD, 220

TDDs. See Task Data Descriptions

technology identification parameters, 309

technology resources, 19

telephony model, 288

Telephony Service Provider, 16

temporary containers, 194

third party call control, 16

TIFF file, 243, 258, 259

differences between SM TIF and T.611 TIFF, 261

TIFF reader, 259

TIFF writer, 260

time representation, 37

time varying media, 340

time varying media objects, 193

time-varying media, 354

training control parameters, 309

TranInfo. see transaction information

transaction information, 31, 34, 77

TSAPI, 16, 288, 289

TSP. See Telephony Service Provider

TVM. see time varying media

—U—

Unicode, 40, 303

units, 33

unsolicited event, 7, 71

—V—

vendor independence, 33

vendor segment, 26

vendor tag parameters, 309

—W—

warnings, 73

word training, 305

��

� This is in fact the rationale for the name System Call Router.

� Process and Email address for such contact to be determined.

� In some implementations, any Key in the KVSet can be supplied as the value for context and this function will return information about the KVpair that follows that key.

� The standard services are differentiated only in  that they are provided by the S.100 framework and have a published and documented API.

� A Call Channel Resource is the media stream of a call. Details of the CCR are provided in Chapter 11.

� It is the responsibility of the server to ensure that volume levels do not exceed local regulatory restrictions.

�  The application may imply a terminal count using  a  pattern expression as well.







ECTF S.100 is a copyright and may not be reprinted by another company or organization without prior consent.



ECTF S.100 is copyrighted and cannot be reprinted without the prior consent of the ECTF.



� STYLEREF "toc hd" \* MERGEFORMAT �Overview of Contents�



�PAGE  �i�





Table of Contents



� PAGE �viii�







Table of Contents



� PAGE �iii�



Table of Contents



� PAGE �i�



�PAGE  �67�





� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Framework - Overview of Concepts�



S.100 API Specification



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 C Language API Conventions�



S.100 API Specification



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Data Types�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Data Types�



� STYLEREF "Heading 1" \* MERGEFORMAT �Session and Event Management�



� STYLEREF "Heading 1" \* MERGEFORMAT �Session and Event Management�



� STYLEREF "Heading 1" \* MERGEFORMAT �Group Management�



S.100 API Specification



� STYLEREF "Heading 1" \* MERGEFORMAT �System Call Router�



� STYLEREF "Heading 1" \* MERGEFORMAT �System Call Router�



� STYLEREF "Heading 1" \* MERGEFORMAT �Connection/Conferencing Management�



Glossary� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�



� STYLEREF "Heading 1" \* MERGEFORMAT �Container Management�



Glossary� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�



� STYLEREF "Heading 1" \* MERGEFORMAT �FAX System Services�



Glossary� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�



� STYLEREF "Heading 1" \* MERGEFORMAT �FAX Resource�



Glossary� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�� STYLEREF "toc hd" \* MERGEFORMAT �List of Tables�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Call Channel Resource�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Framework - Overview of Concepts�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Framework - Overview of Concepts�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Framework - Overview of Concepts�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Framework - Overview of Concepts�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Framework - Overview of Concepts�



� STYLEREF "Heading 1" \* MERGEFORMAT �S.100 Framework - Overview of Concepts�



Index



Index








