
Intel in
Communications

Intel® NetMerge™

CT Application Development
Environment Concepts
and Facilities

Application Note

Contents
Introduction 1

Computer Telephony (CT) 2

Intel® NetMerge™ CT Application Development Environment 2

Resource Manager 2

Resources 2

Resource States 3

Profile 4

Resource Scanner 5

Technology-Specific Access 5

Application Development Language (ADL) 6

Task Management 6

Task/Trunk Configuration 6

Static Data 7

TCP/IP and DCOM Communications 7

Symbolic and Real-Time Debugging 7

Procedural Programming 9

Graphical Programming 9

Performance and Density 10

Intel Benchmark Results 11

Customer ADL Applications 11

VOS Migration 11

Application Development ActiveX Objects (ADX) 12

Programming Environments 12

Performance and Density 13

CallSuite Migration 13

New Directions 13

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities Application Note

Figures

Figure 1: Assign same or different tasks to each trunk (channel) in the configuration 6

Figure 2: Windows Service installation and control utility . 7

Figure 3: Symbolic debugger being used to set a breakpoint in one task 8

Figure 4: Runtime log file showing events over time . 8

Figure 5: ADL program that waits for a call, answers it, plays a prompt, 9
gets DTMF touchtones from caller, and finally plays a specific file based
on the digit collected

Figure 6: The cells of the chart define what actions should be executed in 9
what sequence under what conditions

Figure 7: Property dialog used to set the prompt name and terminating 10
digit for the PlayPrompt cell

Figure 8: Visual Basic program using ADX Voice method PlayDate that 12
prompts for arguments in compliance with COM standard

Tables

Table 1: Intel benchmark results . 11

Table 2: Performance of ADL applications without business functions integrated 11

Table 3: Intel benchmark results . 13

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities Application Note

Introduction
This paper will help you understand the value
of the Intel® NetMerge™ CT Application
Development Environment (CT ADE) to your
development projects. It should be of benefit if
you:
■ Normally write telephony applications in

C/C++ using the hardware APIs

■ Have used earlier Intel products known as
VOS and CallSuite

■ Have used other application development
tools

■ Are new to telephony applications

Computer Telephony
To begin, it might be useful to remind ourselves
what we are trying to do with this technology,
in whatever form it comes.

Our applications need to:
■ Detect and answer incoming calls

■ Place outbound calls and detect results
(busy, not answered, answered by voice,
answered by machine, etc.)

■ Converse with callers (audio going to
caller, telephone tones or voice coming from
caller)

■ Exchange data with callers (to and from a
database)

■ Control calls (conference, disconnect,
transfer, hold, retrieve)

Next, these basic operations need to be
performed:
■ Within networks of many different

protocols (loop-start, T-1/E-1 CAS, ISDN,
IP) with variations by country

■ Within installations of many sizes
(2 analog ports, 500 ports in one chassis,
multiple cooperating chassis)

■ Under operating system control
(Windows*, Linux*, Unix*)

■ With links to system management
monitors and managers

Finally, all of these tasks must work in harmony
with business logic that analyzes inputs and
directs actions and outputs.

The options for creating such applications are:
■ Packages — If your intended application

performs fairly common actions, you might
find complete packages that do it 90% the
way you want it and can be configured or
customized to meet the final 10%.Voice mail
and interactive voice response (IVR) systems
are popular applications in this category.

■ Frameworks — Less specific solutions are
available that provide a telephony container
for your business logic. Call control, monitor-
ing, and management components provide a
prefabricated structure into which your
application work is added. These range from
script languages to drag-and-drop function
blocks.

■ Object libraries — Telephony functions can
be delivered as class objects to be used in
non-telephony languages such as C++*,
Delphi*, and Java*. The developer then
provides the business logic and the
application design using one of the standard
languages from which the library functions
can be called. Objects and frameworks are
sometime referred to as middleware.

■ Direct APIs — This is the interface provided
by the device manufacturer to control the
hardware. It comes in flavors specific to the
operating system in which it lives. Here the
application programmer deals not only with
the business logic and program design, but
also with the handles, events, states, and
masks of the telephony hardware devices.

■ Speech APIs — Besides interfacing to
hardware, there are direct APIs for other
technologies such as speech synthesis and
speech recognition. Again, these can be
controlled directly, usually in C/C++, or
abstracted to service functions in high-level
languages, libraries, and packages.

Which is best? The answer depends on not
only the application and the products available,
but also on your own company or department
experience and mission. Issues that distinguish
these alternative approaches include:
■ Packages – If it is built with all the features

you need, a turnkey solution can be rapidly
deployed. If not all your requirements are
implemented, it can be difficult to customize

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

1

Application Note

or extend ready-made applications,
depending on how well they are designed
for change. Performance and scale can be
problems with general solutions, so
benchmarks before purchase are a must.

■ Frameworks –These come in different
forms that are more or less flexible when not
all of the framework’s assumptions align with
your application objectives. While these can
make the application programming easier for
the most common telephony operations,
some products do not provide access to
less common features of the hardware. Like
packages, performance can be a significant
issue depending on how general the solution
or optimized the design.

■ Object Libraries – Because they make
fewer assumptions about what the
application will do, these components are
more flexible than packages and frame-
works. By abstracting the specific interface
calls to common forms, they ease portability
among like technologies (e.g. SpeechWorks*
and Nuance* for automatic speech
recognition [ASR], ISDN and CAS network
protocols, or DM/IP boards and Host Media
Processing for IP connectivity).

■ Direct APIs – These are certainly the most
comprehensive tools available for controlling
the hardware or speech engine. The tradeoff
is the demanding level of detail that must be
accurately managed. The costs of training
and implementation for this choice need to
be considered, not only for the initial version
of the application, but also for the inevitable
changes in the underlying technologies.

Intel® NetMerge™ CT Application
Development Environment
Intel provides three of the alternatives listed
above:
■ A direct C/C++ API (known as R4)

■ A telephony framework

■ An object library

The latter two are packaged as Intel®

NetMerge™ CT Application Development
Environment (CT ADE). (You can find more

information on R4 at http://www.intel.com/
network/csp/products/indx_aet.htm.)

The rest of this paper describes the concepts
and facilities of the two CT ADE programming
platforms:
■ Application Development Language

(ADL) — A procedural language, with
optional graphical interface, incorporating
many telephony application building blocks.

■ Application Development ActiveX
Objects (ADX) — A library of methods with
a COM interface that can be incorporated
into Windows visual development languages
like C++, Visual Basic*, Delphi, as well as
.NET languages C# and VB.NET.

At the heart of these two platforms is the
Resource Manager, the foundation code that
performs all the technology-specific interac-
tions.

Resource Manager
The core component of the Resource
Manager is a thin layer of code that mediates
between your programming command (like
Play in ADX or MediaPlay in ADL) and the
underlying device API. For example, if you
invoke the ADL function TrunkAnswerCall, the
Resource Manager determines:
■ Which trunk interface is being used

■ Whether it is legal to make this call (Has an
incoming call been signaled?)

■ Which API function to use: dx_sethook (R4
analog), cc_Answer (R4 PRI),
gc_Answer_AnswerCall (R4 Global Call), etc.

To achieve this device abstraction, we need to
define the devices and all of their characteris-
tics.

Resources
Resource Manager is built around the concept
of a resource. Technically, a resource produces
and/or consumes a single stream of audio.
Resources fall into these categories:
■ Trunk interface

■ Media (player/recorder)

■ Fax (sender/receiver)

Application Note

2

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

http://www.intel.com/

■ Text-to-speech (TTS)

■ Voice recognition

■ Conferencing

■ Some examples should help clarify these
ideas.

First, consider an Intel® Dialogic® D4PCI voice
processing board with four channels. Each
channel is viewed by Resource Manager as
having two resources: a trunk resource and a
media resource. The trunk resource
corresponds to the phone line connector. The
media resource corresponds to the VOX device
that can play and record sound files.

Two audio streams are managed by the
channel. The caller’s voice (as well as touch-
tone digits and other audio) follows this path:

Caller →Analog phone line →Trunk resource
→Media device (VOX/Wave recorder)

In the other direction, the audio stream
originates at the VOX/Wave player resource
and is sent to the phone line through the trunk
interface:

Media resource (VOX/Wave player) →
Trunk resource →Analog phone line →Caller

As this example shows, the audio stream
output from one resource can sometimes be
used as input to another resource. In the
simple case of a D4PCI board, the media and
trunk devices are hard-wired so that the output
from one is input to the other and vice versa.
With higher-end devices, it may be possible to
control this routing on the fly (e.g., with devices
on an SC Bus or CT Bus).

For another example, consider an Intel®

Dialogic® D41JCTLS converged communica-
tions board. This board has four analog trunk
interfaces (called LSI devices) and four
player/recorders (VOX devices). Resource
Manager considers an LSI to be a trunk
resource and a VOX to be a media resource.
From the Resource Manager’s point of view,
this board is similar to the D4PCI board. The
main difference is that the routing of the
resources can be changed via the CT Bus.

A T-1 PRI ISDN interface board such as the
Intel® Dialogic® DTI240SC board is treated by
the Resource Manager as 23 trunk resources,
one for each voice (B) channel. In other words,
a trunk resource corresponds to a single T-1
timeslot. The signaling (data, D) channel on an
ISDN circuit is not a Resource Manager
resource at all. (It does not produce or con-
sume any audio.) The existence and manage-
ment of the D channel is, for most purposes,
hidden from the Resource Manager user. For
example, if the T-1 suffers an LOS condition
(loss of signal, or D channel down), then each
of the 23 Resource Manager trunk resources
for the B channels transitions to a network
down state (more on resource states later). If a
B channel wishes to dial a call, which requires
sending a data packet on the D channel, the
Resource Manager command is exactly the
same as for making a call on an analog trunk
by dialing DTMF digits.

Resource states marshal low-level technology
events and command results into operational
resources states. For the most part, you can
write your applications without following the
underlying state changes. However, when
needed, these logical call progressions can
expose some unexpected conditions.

Resource States

For every kind of resource (trunk, media, fax,
TTS, voice recognition, conference), Resource
Manager predefines a number of states. For
example, a trunk resource can be ringing or
disconnecting and a media resource can be
playing or recording.

The state of a resource can change in two
ways: unsolicited (as a result of an external
event) or as a result of a Resource Manager
function call.

An example of an unsolicited state change is a
trunk resource that is idle transitions to a
ringing state when an incoming call is signaled.

An example of a state change due to a function
call is a media that is idle transitioning to a
playing state in response to a play command.

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

3

Application Note

Functions that can change the state of a
Resource Manager resource are known as
commands. For example, the ADL function
MediaPlay and the ADX method PlayWave
invoke Resource Manager commands.

Resource Manager strictly enforces the
following rules:
■ Each command has a given set of states

where it is legal to issue the command. Most
often, the resource must be in the idle state
for the command to be legal. Also, for most
commands there is only one state in which
the command can be issued. Important
exceptions are the Abort and Reset com-
mands.

■ If the command fails, the state of the
resource is left unchanged.

■ If the command succeeds, the state of the
resource is immediately changed to a new
state. For each command, this state is fixed
so that the application can be sure without
having to check that if the command suc-
ceeds, the resource has transitioned to a
given new state. For example, if Play does
not return an error, the resource is guaran-
teed to be in the playing state.

Every resource starts out in the opening state.
ADL and ADX normally hide this state from
you, so you are unlikely to find a resource in
this condition. When device initialization is
complete, it transitions to the idle state and is
then ready to accept a command.

These states and commands are common to
all Resource Manager resources of all types:
■ Opening state

■ Idle state

■ Reset command

■ Resetting state

■ Abort command

■ Aborting state

Note that the Resource Manager definition of
idle may differ from an “idle” condition defined
by the underlying API. For example, in the R4
API, an LSI device is considered to be idle
unless it is in the process of going on- or off-
hook. It is considered to be “busy” if the

attached VOX device is playing or recording.
The R4 API does not have the ability to track
the logical state of the call (connected or not)
except through indirect means such as check-
ing for the current hook switch state plus the
presence of loop current on the line. This is
not fully reliable since there may be short
glitches in loop current without disconnecting
a call. In Resource Manager, by contrast, the
Idle state means that there is definitively no call
in progress. A live call puts the trunk resource
into the connected state.

Profile

The Resource Manager Profile is a database
that is quite similar to the Windows Registry.
The Profile stores the following information:

■ Details of all installed hardware devices as
determined by the Resource Scanner
(described below)

■ User-supplied hardware configuration infor-
mation which cannot be determined by the
Resource Scanner

■ User-configurable options, such as the
default language for speaking values
(English, Spanish, etc.)

The Profile is treated as read-only by running
applications (ADL and ADX) and should be
fully initialized before these applications are
started.

No dynamically changing information, such as
the current state of a device, is stored in the
Profile.

Entries in the Profile have a name and a value.
The name of an entry is similar to a path name
in a file system. All names begin at the root,
which is designated by a back-slash character
(\). For example, a Profile entry much used by
Resource Manager code internally is:

\TechCount=4

The value of TechCount is the number of
different Resource Manager technologies
installed in this PC (a technology is a specific
hardware and API combination
(e.g., R4 VOX).

Application Note

4

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

Internally, the Profile does not store the value
names. All value names are actually stored as
integers. The set of integers used for value
names is predefined. Resource Manager
utilities convert between the integer values
used internally and the string names to display
the Profile in a form convenient for human
readers. This allows for more efficient lookup
algorithms and, hence, faster access to the
Profile when Resource Manager applications
are running. The allowed integer values for
value names are sometimes called RegIDs
(Registry Identifiers) because the Resource
Manager code internally refers to the Profile as
the Registry.

Unlike the Windows registry, user application
code has no direct access to the Profile and
cannot create new entry names. The Profile is
for internal use by Resource Manager only.

Resource Scanner
Determining the installed hardware and driver
configuration is an important and often tricky
task. Traditional APIs have unique and unequal
functions to query the installed configuration.
Often, important information is simply
unavailable.

Building the hardware/driver configuration
database in the Resource Manager Profile is a
two-step process:
1. First run the Resource Scanner, which

extracts all available configuration
information from the available device APIs.
The Resource Scanner must be rerun each
time the hardware or driver configuration
changes.

2. The second step “manually” updates the
Profile. This step adds information that
cannot be automatically determined and so
must be provided by the user. For example,
for an E-1/R2 trunk, the user must specify
which country-dependent parameters
should be used for the R2 protocol. For an
analog trunk, the user must specify whether
caller ID is available. For a T-1 CAS trunk,
the user must specify which Global Call
protocol is used to interface to the PBX or
CO switch.

Building the device scanning process into the
application at runtime presents a number of
drawbacks:
■ The scanning may be quite time-consuming,

which slows launching your application. By
running the Resource Scanner only when
needed, application startup is faster.

■ New driver releases sometime deprecate old
APIs and/or introduce new APIs for
configuration information. By separating
scanner code from runtime code, we can
more easily provide up-to-date scanners that
adapt to the latest software releases.

Technology-Specific Access
The Resource Manager delivers high-level
abstractions so that application programming
can be API transparent (i.e., the same set of
functions works under all supported telephony
APIs and all supported trunk types). Some less
common aspects are available only with certain
technologies. For these cases, the lower-level
API is exposed through instruction or data
identifiers (RegIDs) and commands to execute
the instruction or access the data (e.g., GetInt
[get integer value] and SetInt [set integer value]
and counterparts for boolean and string
values).

These functions are not usually required to
program applications using the telephony
hardware, but are available for more advanced
operations. The functions translate directly to
the execution of the hardware API functions, as
shown in the descriptions below.

Example: Set the retry strategy for fax
operations:

SetInt R4GrtFaxRetryStrategy
Use this REGID to set the
m_gfqRecord.retry_strategy API element.

Example: Set the digit detection feature on a
DCB conference device:

SetInt R4DcbConfEnableDigitDetection

Use this REGID to directy access the
dcb_setdigitmsk(handle, ConfId, Value,
CBA_SETMSK) API function to enable and
disable digit detection.

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

5

Application Note

Example: Enable any device mask for a digital
trunk using Global Call:

SetInt R4GcEnableMask

Use this REGID to directly access the
gc_SetEvtMsk API function with the
GCACT_ADDMSK parameter.

There are more than 300 such technology-
specific access functions for telephony devices
and more for TTS, voice recognition, and wave
media features. Any telephony operation that
has not been abstracted to the high-level API
can be implemented as direct access
functions.

In addition, hardware parameters can be set at
startup. These execute board-level API calls.
Arguments and results from these operations
are written to a runtime log file to help configu-
ration troubleshooting.

Application Development
Language (ADL)
Beyond controlling the telephony devices, a
computer telephony (CT) application confronts
several more unique challenges.
■ Multiple calls must be managed at one time.

A multitasking architecture is needed.

■ Each call might need to have a different
conversation and work result. Program
selection at call time is needed.

Applications typically run for days or weeks.
Designs must be robust (effective error
recovery, resource tight).

■ Installations of hardware and software are
often housed remotely, so hands-on
operation is not always possible.

■ Phone call processing is a real-time activity
demanding real-time troubleshooting tools.

■ Intel has addressed these requirements and
more in its telephony-specific language,
ADL. The sections that follow explain some
of the facilities available to support this
complex programming environment.

Task Management
ADL is multitasking, which means that two or
more tasks may be executing at the same
time. Each task has its own private copy of
variables and arrays and its own independent
path of execution, even if it is running the
same program as one or more other tasks. In
a multitasking environment, tasks usually
continue their execution independently of each
other. Sometimes, however, it is necessary for
tasks to coordinate their activity or to
communicate information. This is done with
semaphores, messages, and global variables.

Task/Trunk Configuration
The Trunk Configuration program lets you
specify which of your project’s applications to
use for the trunk lines in your system. When
you run an ADL project, the Trunk
Configuration settings determine which appli-
cations to start.

Application Note

6

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

Figure 1: Assign same or different tasks to each trunk (channel) in the configuration

You can assign a trunk resource or set of trunk resources to any application in your project. You
can also specify that resources should be assigned to an application depending on the ANI or
DNIS information received for each incoming call on those lines.

Static Data
Data areas in ADL are fixed at compile time. The starting position of each variable is fixed within the
data area of the program. This makes it more efficient for ADL to locate data when executing an
instruction. By default, ADL will not dynamically allocate memory. This avoids the need for garbage
collection and the possibility of resource leaks.

TCP/IP and DCOM Communications
ADL can exchange messages and data with other applications on a local- or wide-area network
using companion TCP/IP or DCOM communication programs. These tools enable remote
monitoring of tasks, network status, and application progress.

Also, ADL includes Windows Service features that facilitate attendant-free system recovery (reboot)
at remote locations.

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

7

Application Note

Figure 2: Windows Service installation and control utility

Symbolic and Real-Time Debugging
Different kinds of problems require different approaches. For locating design errors where the flow
of control moves in unexpected directions, ADL comes with a symbolic debugger. Step from one
instruction to the next, examine the content of variables, and set breakpoints — all common
actions of today’s advanced integrated development environments.

For examining what happened when a caller hung up at 3 a.m. the previous morning, ADL writes
a runtime log file that can contain summary or detail traces of every action taken during execution.
ADL, Resource Manager, and R4 events, states, and results can be captured to one-hundredth of
a second.

Application Note

8

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

Figure 3: Symbolic debugger being used to set a breakpoint in one task

Figure 4: Runtime log file showing events over time

Figure 5: ADL program that waits for a call, answers it, plays a prompt, gets DTMF touchtones from caller, and finally

plays a specific file based on the digit collected

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

9

Application Note

Procedural Programming
ADL is a language similar to C or Basic with functions and variables.

Graphical Programming
ADL Flowcharter, part of the ADL Studio, is a graphical tool that lets you create and edit telephony
applications. Instead of writing source code, you draw telephony applications in the Flowcharter
by inserting cells into a chart.

Figure 6: The cells of the chart define what actions should be executed in what sequence under what conditions

The cells are predefined ADL library functions that use arguments provided as properties in the
cell.

Performance and Density**
To achieve its goal of API transparency, CT ADE inserts a resource management layer that
unavoidably introduces some overhead. However, that overhead has been minimized through
optimized program design. But by far the most significant aspect of performance is how the
application manages multiple channels — not how fast it attends to a single stream of
instructions.

In any application, CPU usage varies according to the program design:
■ Multiple exe (one channel per application) — This carries the heaviest CPU overhead because

Windows must change from one process (program) to another to request and service each
telephony state change.

■ Multiple thread (one channel per thread in one process) — This design achieves better CPU
performance but still needs the operating system to switch threads to manage the channels.

■ Single thread state machine (all channels use one thread) — State changes are immediately
known to the thread and can be handled directly without asking the operating system for help.
Current channel state data is stored, next channel state data is retrieved, and processing
continues.

Unfortunately, the greater the efficiency in CPU usage, the more difficult it is to design and
implement. To build a complete, robust, and flexible state machine requires many years of effort.
This is why Intel offers ADL, its implementation of a state machine for the control of hundreds of
channels in a single thread.

Application Note

10

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

Figure 7: Property dialog used to set the prompt name and terminating digit for the PlayPrompt cell

Intel Benchmark Results**
Table 1 shows some actual performance results in both lab tests and the field.

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

11

Application Note

Configuration Applications Density Platform Memory CPU
Running on One PC (Ports)

Windows 2000 Caller: Makes calls,
Server disconnects, and repeats

Pentium® III
processor
(650 MHz)

250 MB RAM Called party: Answers calls, 288 ADL 33MB 15%

Intel® Dialogic® plays a prompt (144 in,

DMV960A4T1 (streams audio), 144 out)

multifunction board disconnects, and repeats

Intel® Dialogic®

System Release
5.1.1

CT ADE v8.2 SP1

Table 1: Intel benchmark results

This test used 15% of the available CPU cycles to perform all of the API calls, event handling, and
state change housekeeping. The rest is available for other uses such as business logic or speech
synthesis or recognition.

Customer ADL applications
The real-world results in table 2 show the performance of ADL applications that do have the
important business functions integrated. Again, even if these applications are less complex than
those you plan to build, it will not be the telephony abstraction work that limits the density per
chassis.

Site
Processor

Density
Application

CPUSpeed Type

Miami 500MHz 16 T-1s (384 lines) Debit card 30%

Vancouver 1.26GHz 20 T-1s + 4 (484 lines) Chat line 40%

Portland 650MHz 16 T-1s (384 line) Debit card 50%

Israel 500MHz 16 E-1s (480 lines) Debit card 30%

Table 2: Performance of ADL applications without business functions integrated

VOS Migration
ADL is the descendent of VOS* (Voice Operating System) from Parity Software. ADL
introduces a complete new set of Resource Manager functions to VOS. The old-style functions
(sc_, DTI_, GC_…), referred to as VOS Legacy, will continue to be supported for backwards
compatibility. However, for new projects Intel strongly recommends moving to the Resource
Manager API.

Application Development ActiveX Objects (ADX)
Component Object Model (COM) controls, also referred to as ActiveX objects, contain useful ser-
vices that can be easily incorporated as components into larger mission applications. This method
of delivering complex system functionality within business-oriented applications has become very
popular, especially with developers who prefer using graphical programming environments like
Visual Basic or Delphi.

All of the telephony services provided by the Resource Manager described above are packaged
into building blocks that expose their functionality during development (show their methods, argu-
ments and properties), register that functionality with the operating system, and create the neces-
sary objects at execution time.

Application Note

12

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

Figure 8: Visual Basic program using ADX Voice method PlayDate that prompts for arguments
in compliance with COM standard

The suite of controls collectively known as ADX, are:
■ Voice — Analog, digital, IP, and HMP call control platforms

■ Fax — CP, VFX, and DM3 hardware

■ Conference — MSI, DCB, and DM3 hardware

■ Text-to-Speech — Enabling use of SpeechWorks* Speechify*, Nuance Vocalizer*, L&H Real
Speak*, and SAPI-compliant products

■ Automated Speech Recognition — Supporting products from SpeechWorks, Nuance,
Philips, and Microsoft

■ Network Hub — Thread-to-thread or process-to-process data exchange using TCP/IP or
DCOM

Programming Environments
Any environment that supports COM controls will support the ADX objects. Languages Intel has
tested include C++, Visual Basic, Delphi, C#, and VB.NET. Reports from the field indicate that CT
ADE controls have also been successfully used in JavaScript* Web pages, Visual FoxPro*, and
PowerBuilder*. There are also third-party products that enable other languages like Java* to use
COM controls.

Performance and Density
Early COM objects were written using Microsoft Foundation Classes (MFC). These classes were
designed for visual objects with extensive support for user interface dialogs and document
processing. Adapting MFC to COM programming led to bloated code and COM components with
an unnecessarily large overhead. Intel ADX objects use the Active Template Library instead of MFC.
ATL is specifically designed for COM development resulting in efficient COM components with a
small footprint.

Using the same benchmark design and configuration that we used for ADL, a C++ multithreaded
program with ADX Voice control results in twice the CPU usage but still with 70% left for data and
other logic processing. Furthermore, these single chassis results can be improved by using a
dual-processor CPU.**

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

13

Application Note

Table 3: Intel benchmark results

Configuration Applications Density Platform Memory CPU
Running on One PC (Ports)

Windows 2000 Caller: Makes calls,
Server disconnects, and repeats

Pentium‚ III
processor
(650 MHz)

250 MB RAM Called party: Answers calls, 288 ADL 43MB 30%

Intel® Dialogic® plays a prompt (144 in,

DMV960A4T1 (streams audio), 144 out)

multifunction board disconnects, and repeats

Intel® Dialogic®

System Release
5.1.1

CT ADE v8.2 SP1

CallSuite Migration
ADX is the descendent of CallSuite controls from Parity Software: VoiceBocx*, FaxBocx*,
SwitchBocx*, ChatterBocx*, MatchBocx*, and NetHub*. Although with version 8.3 the names have
been changed in the literature, the control names, as well as their interface signatures, are
unchanged.

New Directions
What else can Intel do for the CT development community? Here are some of the alternatives Intel
has been considering:

■ VoiceXML/SALT — Automated voice services can be expressed using these markup
languages, facilitating links to Web services from telephones. You can build automated voice
services using exactly the same technology you use to create visual Web sites. For the Intel view
of the current state of VoiceXML platforms, see “VoiceXML Platforms,” an Intel white paper. Read
about the collaboration between Intel and Microsoft on an implementation of SALT at
http://www.intel.com/home/trends/future/salt.htm and “Microsoft .NET Speech Technologies”
at http://www.microsoft.com.

http://www.intel.com/home/trends/future/salt.htm
http://www.microsoft.com.

■ Windows library (not COM) — Although Intel has implemented the most efficient form of
COM objects, there are some program designs and host languages that could be better
supported by a library of C++ telephony classes.

■ Linux* — All the advantages of the Resource Manager, the telephony classes, and the ADL
framework.

Let us know how these do or do not line up with your requirements for the future. Contact your
Intel distributor (http://www.intel.com/reseller/index.htm) or the Intel product manager for CT
ADE, Lyle Cowen (Lyle.Cowen@Intel.com; (415) 332-5656, x1310).

Application Note

14

Intel® NetMerge™ CT Application Development Environment Concepts and Facilities

http://www.intel.com/reseller/index.htm

To learn more, visit our site on the World Wide Web at http://www.intel.com

1515 Route Ten
Parsippany, NJ 07054
Phone: 1-973-993-3000
Fax: 1-973-993-3093

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise,
to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such
products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of
Intel® products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any
patent, copyright or other intellectual property right. Intel® products are not intended for use in medical, life saving, or
life sustaining applications. Intel may make changes to specifications and product descriptions at any time,
without notice.

* Other names and brands may be claimed as the property of others.

** Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration
may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on the performance of Intel
products, reference http://www.intel.com/procs/perf/limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

Intel, Intel Dialogic, Intel NetStructure, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the USA Copyright © 2003 Intel Corporation All rights reserved. e Printed on recycled paper. 03/03 00-8541-001

http://www.intel.com
http://www.intel.com/procs/perf/limits.htm

