
1

IInntteell CCTT AADDEE
TTRRAAIINNIINNGG CCOOUURRSSEE

GGVVOOSS 88..22 SSPP11 ((AADDLL))&& CCTT AADDEE
AArrcchhiitteeccttuurree

Three Harbor Drive
Suite 110
Sausalito, CA 94965
Tel.: (415) 332-5656
Fax: (415) 332-5657

hhttttpp::////wwwwww..iinntteell..ccoomm//nneettwwoorrkk//ccsspp//pprroodduuccttss//cctt__aaddee..hhttmm

2

INDEX

1. Intel CT ADE... 4

2. Introduction ... 5
2.1. Intel Brand names...5

3. CTADE, Firsts steps: Installation... 6

4. CTADE, Graphical VOS ... 7

5. VOS Language Reference ... 8
5.1. What is VOS? ..8
5.2. First VOS program ...9

6. VOS Language... 10
6.1. Source Code...10
6.2. Values ...12

6.2.1. Numerical values.. 12
6.2.2. Logical values .. 12

6.3. Variables. Overview..12
6.4. Arrays...14
6.5. Constants. Introduction..16
6.6. Arithmetic Expressions...19
6.7. Arithmetic with Decimal Point ..20
6.8. Logical Conditions ..21
6.9. Assignments ...22
6.10. String Concatenation ..23
6.11. Loops...25
6.12. Calling Functions...28
6.13. Functions and Library Files. ..30
6.14. Include Files ...31
6.15. Internal Functions ...32

6.15.1. Database ... 32
6.15.2. Serial Communication.. 32
6.15.3. Task Management .. 32
6.15.4. Inter-Task Communication... 33

3

6.15.5. String Manipulation.. 33
6.15.6. Screen and Keyboard.. 33

6.16. External Functions ..34
6.16.1. NetHub Plus RLL... 34
6.16.2. Ado RLL .. 35
6.16.3. Socket RLL .. 36
6.16.4. Web RLL.. 36

6.17. Multi-tasking..37
6.18. Task Management. ..39

6.18.1. Task number. .. 39
6.18.2. Suspending a Task.. 39
6.18.3. Killing a Task ... 40
6.18.4. Semaphores, messages and global variables .. 41

6.19. Date and Time Functions..43
6.20. String functions..44
6.21. File and Directory Functions (fil_, dir_)..46
6.22. Graphical VOS, Introduction...50
6.23. Graphical VOS. Firsts steps ...51
6.24. Graphical VOS. Basic Configuration. ...52
6.25. Graphical VOS. Executing the application ...53

6.25.1. User Interface .- Configuration... 55
7. CT ADE Architecture (Topaz) , Introduction... 75

7.1. Graphical VOS. CT ADE Architecture Unleashed..78
7.1.1. CTADE_A. Resources and Resource Index Numbers. .. 79
7.1.2. CTADE_A Functions overview. .. 80
7.1.3. CTADE_A. Routing... 103
7.1.4. CTADE_A. Routing types: Full Duplex y Half Duplex... 105
7.1.5. CTADE_A. Call Control, Hang-up Processing and Onhangup.. 106
7.1.6. CTADE_Architecture. Technologies ... 109
7.1.7. CTADE_A Profile Ids .. 112
Creating and Configuring the Topaz Profile ... 115
7.1.8. CTADE_A. Configuration. TOPAZ.INI .. 126
7.1.9. CTADE_A. Tones .. 130

8. VOS Runtime-Log ... 136

4

11.. IInntteell CCTT AADDEE

The core of any CT application is The voice card. A voice card is just a PC extension like

an Ethernet LAN Adaptor or a Sound Blaster card, but with voice processing features. There are several

types of PC buses: ISA (16 bit, 8 Mhz) and PCI (33 MHz). There are two kinds of network interfaces:

Analog and Digital. The first one normally has sockets RJ-11 and the second one normally are E-1 (T1 in

EE.UU.) or ISDN conexions (PRI or BRI).

Another important concept is the voice bus, which allows you to share the resources. Voice

cards come with a special programming API based on Dinamyc Link libraries (DLL) for C/C++

environments. C/C++ language is normally used in complex low level application development (S.O. ,

device drivers, etc.). Documenting and maintaining C/C++ code is not trivial.

Intel’s CT ADE primary objective is to help developers shortern development process

thanks to an easy to use, full-featured, industrial-strength software development environment.

5

22.. IInnttrroodduuccttiioonn

CT ADE - Graphical VOS 8.2 SP1, is the lastest version of the Intel telephony tools. These tools

include FlowCharter, VOS Source code editor, VOS Source compiler, Runtime, VOS Source code step

by step debugger and Simphone: a telephone line simulator that uses any windows sound device (like

sound blaster, for example). All these tools are now integrated in a single development environment: CT

ADE.

2.1. Intel Brand names

Since the acquisition of Intel over Parity Software, the product has been changing and

adapting to the new times. Please take a look in the following table to recognize the new names:

• Graphical VOS Application Development Language (ADL)

• CallSuite Aplication Development Activex Objects (ADX)

6

33.. CCTTAADDEE,, FFiirrssttss sstteeppss:: IInnssttaallllaattiioonn

First we have to install the CT ADE, therefore we will introduce the CD (AutoRun CD) in our

CD Drive. The following pop up menu will appear on your screen:

We have just installed VOS with the CTADE Architecture engine.

7

44.. CCTTAADDEE,, GGrraapphhiiccaall VVOOSS

After installing Graphical VOS, we will see the following menu:

Now we have to configure the CTADE_A layer in order to detect which Dialogic drivers and

boards are installed in the system (R4, S.100, etc…). CTADE_A is able to detect our dialogic

configuration, to do so we will have to run the TopazProfile exe

Once we do that (only the first time and every time our dialogic configuration changes), we can

use Graphical VOS with CTADE_A.

Now we are going to see some of the most important features of Graphical VOS app and

how to obtain the best results from this tool.

8

55.. VVOOSS LLaanngguuaaggee RReeffeerreennccee

5.1. What is VOS?

VOS (Voice Operative System) is a:

• Script Language

• VOS language Compiler

• VOS Code Runtime

program
 TrunkUse(Res
 TrunkWaitCall()

endprogram

func add(a,b)
 …

Asm ax,bx
Dec 1
Cmp ax,0
Jmp 0x234
…101010101010101010101

Compiling process.

VOS Compiled code .VX BinaryFiles

VOS Source CODE. .VS Files

VOS Runtime.- Executing .VX Files

9

5.2. First VOS program

Let’s see a sample VOS program:

program

 vid_write("I am a VOS program!");

 vid_write("Type any key to exit...");

 kb_get();

 vid_write("Exiting now.");

endprogram

To demonstrate multi-tasking capabilities of VOS, we will show two programs running in

parallel.

The following program shows a simple clock on the screen, updated once per second:

program

 for (;;)

 vid_cur_pos(0, 50);

 vid_print(time() & " " & date());

 sleep(10); # Wait one second

 endfor

 endprogram

Now let’s do a third one to execute both programs simultaneusly:

program

 spawn(“clock”);

 spawn(“hello”);

endprogram

10

66.. VVOOSS LLaanngguuaaggee

In this chapter we’re going to review briefly the most important concepts of the VOS

Language.

The VOS language is easy to learn, robust and fast. It is specially designed for call

processing -- for example, there is no dynamic memory allocation, so live systems cannot run out

of memory. The VOS language is simpler than Visual Basic and much simpler than C or C++.

6.1. Source Code

VOS is a case-sensitive language. All parts of the language recognize the difference

between upper-case letters (ABC...) and lower-case letters (abc...).

Comments may be included in source code by using the # character. (This is the so-called

"pound" sign, which may appear as £ or another special character on non-US PCs; it is the ASCII

character with code 35 decimal, 23 hex.) Comments continue up to the end of a line.

The end-of-line mark has no syntactical significance except that it terminates a comment.

Multiple statements may be included in a single line, although this is discouraged because it

generally makes the source code harder to read.

The source code for a VOS program is organized in the following way:

<variable declarations>

 program

 ...any number of statements...

 endprogram

 <onsignal declaration>

 <function declarations>

11

The <declarations> section informs VOS of the variables and constants to be used in the

program. There may be any number of dec..enddec blocks, they may be positioned before or after

the program..endprogram block or before or after any func..endfunc block.

The following is an example of a complete VOS program:

dec

 var line : 2;

 const MSG = "C:\MSG\message.vox";

enddec

program

 line = arg(1);

 if (line eq 0)

 line = 1;

 endif

 TrunkUse(line);

 TrunkWaitCall(line);

 TrunkAnswerCall(line);

Message();

 restart;

endprogram

onhangup # Hang-up processing

 TrunkDisconnect(),

restart;

endonhangup

func Message()

 MediaPlayFile(MSG);

endfunc

12

6.2. Values

All values in VOS are stored as character strings. Character strings are written as a

sequence of characters inside double quotes:

"This is a string"

6.2.1. Numerical values

Numbers are represented by strings of decimal digits. For example, one hundred and

twenty three is represented as the string of three characters "123". The double quotes may be

omitted when writing a number, so "123" and 123 both represent the same string of three

characters.

6.2.2. Logical values

True and False are also represented as strings. False is represented as an empty

string containing no characters, written "", and True is represented as "1" (a string

containing the decimal digit 1).

6.3. Variables. Overview

A variable has a name and contains a character string. All variables are set to empty strings

when VOS starts and when a restart statement is executed.

A variable has a maximum length. If a string longer than this length is assigned to the

variable, it will be truncated to this maximum length. If you are running a Debug version of VOS, a

warning message is issued if a string is truncated by assigning it to a variable. (If you want to avoid

the warning, assign using a substr function.)

Important

One of the most common programming mistakes that VOS
beginners make is to forget that variables have fixed length and
that values will be truncated. This is yet another good reason to
make a habit of using the Debug version of VOS and to look at
the vos1.log file on a regular basis to make sure that there are
no error or warning messages.

13

Why a maximum length for each variable? Why doesn't VOS allocate memory

dynamically? This is because call processing systems must often run unattended for days, weeks and

months at a time. VOS is designed to avoid dynamic memory allocation in all areas to avoid

problems caused by memory fragmentation and running out of memory in a live system. This is one

of many reasons why we chose to design a new language for VOS rather than using an existing

language.

Variables must be declared (given a name and maximum length) before they can be used.

Variables can be declared in two places: before the start of the main program, or inside of a function.

An example program with a variable declaration block looks like this:

dec

 var x : 2;

 var y : 3;

 enddec

 program

 x = 12;

 y = 123;

 y = "Too long"; # y becomes "Too"
 endprogram

Two variables are declared: one named x, with a maximum length of 2 characters, and one

named y, with a maximum length of 3 characters.

A variable name must start with a letter and may continue with any number of letters, digits

(0..9) and underscore characters (_). The VOS language is always case sensitive, so the variable

names X and x refers to two different variables.

14

Something to bear in mind is the Symbol Table concept. The VOS Symbol Table don’t allow

levels, this means that the functions names are globals and the variables names are visible in the task

entirely:

dec

 var x : 2;

var y : 3;

 enddec

 program

 x = 12;

 y = 123;

 y = "Too long"; # y becomes "Too"
 endprogram

 func suma(a,b)

 dec

 var x:2; <<<< - ----- compilation error

 enddec

 x = a+b;

 return x;

 endfunc

6.4. Arrays

An array is a set of stored strings given a single name (identifier).

An array is one or more variables with the same length, all with the same name. The different

variables in an array are distinguished by a number called the "subscript". For example, we could

have an array called a with three variables in it, that could be named:

a[1], a[2], a[3]

Each of these three can be assigned values and used in other ways just like other variables. For

example,

15

a[1] = "Hello";

x = a[3];

spk_num(a[2]);

Arrays may be declared wherever variables may be declared.

An example of an array declaration is:

dec

 var Arr[1..10] : 8;

 enddec

Sum = 0;

for (Index = 1; Index <= 10; Index++)

 Sum += Arr[Index];

endfor

Any expression may be used for an array index.

In general, an array declaration is:

<ArrayName> [<MinIndex> .. <MaxIndex>] : <MaxLen>

An array index must be in the range 0 .. 255. This means that <MinIndex> and <MaxIndex>

must be in the range 0..255.

There may be no more than 255 arrays defined in a single program.

For arrays bigger than that, I strongly recommend the use of glb_dimx for bigger arrays, of

global dynamic memory allocation. We will see this later on.

16

6.5. Constants. Introduction

Constants are fixed values used by VOS. Constants are strings of characters. Strings are

usually specified by typing the characters within double-quotes:

"This is a string"

If all the characters in the string are decimal digits, the double quotes may be omitted.

Therefore, "123" and 123 specify the exact same string of three characters. Note that, because of

this rule, -123 is therefore an expression with a unary minus operator followed by the constant

string "123", whereas "-123" is a constant string with four characters.

Within a string, the backwards single quote character, `, has special significance. The `

and the following characters are interpreted as shown in the following table.

Sequence Puts this single character into the stored string

`` Single backwards quote `

`q Double-quote "

`r Carriage-return (hex 0A)

`n New-line (hex 0D)

`t Tab (hex 09)

`xx Byte with hex value xx, eg `09 would have the same effect as `t. It is illegal to

use `00.

17

A name (identifier) may be assigned to a constant within a dec .. enddec block. Dec ..

enddec blocks may be placed before the main program, in which case the variables declared may

be used throughout the entire program, or following a func statement, in which case the constant

name may be used only within the function. All variables are set to an empty string when VOS

starts the program or when a restart statement is executed.

A typical declaration block looks like this:

dec

 var <name> : <length>, <name> : <length> ... ;

... more variable declarations ...

const <name> = <value>, <name> = <value> ... ;

... more constant declarations ...

enddec

For example,

dec

 const MAX_LINES = 24;

 enddec

18

declares one constant named MAX_LINES which stands for the two-character string "24".

Following this declaration, MAX_LINES may be used wherever the string "24" is desired within

the source code.

The value assigned to a constant may be any constant expression. A constant expression

is an expression where all values are constant strings and where operators and parentheses (but

not function calls) are permitted. For example,

const Size = (1234 + 777)/45;

 const Str = "ABC" & "DEF";

Constants that are passed using the -D command-line option to Vlc may also be used in constant

expressions.

For another example of a named constant,

const LOCAL_AREA_CODE = 415;

With this definition, you can use LOCAL_AREA_CODE anywhere in the program you

want the characters 415 to appear. This has two advantages. Firstly, when you change the

program, perhaps to run in New York, you only have to make one change:

const LOCAL_AREA_CODE = 201;

By convention, constants are often named using UPPER CASE names, but there is

nothing in VOS or vlc that expects or requires this convention.

19

6.6. Arithmetic Expressions.

In VOS you can use basic arithmetic expressions:

Operation Expression

Add Left + Right.

Subtract Left – Right

Multiplicacion Left * Right

Divide Left / Right

Change Sign -Dcha.

Operators have different "strengths," also called "precedences." For example,

multiplication is stronger than addition, so in the expression A+B*C, the multiplication B*C is

performed first and the result added to A. Parentheses (...) may be used to create groups and

force evaluation in the desired order. For example, in the expression (A+B)*C the addition will

be performed first.

Important

Arithmetic is performed internally by VOS using 32-bit integer precision.

Results involving 10 or more decimal digits may be incorrect. No warning or

error is given by VOS when a value overflows 32-bit precision.

20

Because VOS uses 32-bit integers internally, values from -231 to 231-1 can be

represented, which is the range:

-2147483648 to 2147483647

Therefore, all 9-digit decimal integers can be represented, but most 10-digit values

cannot. This means, for example, that you can always add two 9-digit numbers, so:

999999999 + 888888888

will work correctly, but:

(999999999*5)/4

will NOT work because the intermediate result from the multiplication will overflow 32

bits.

6.7. Arithmetic with Decimal Point

 At the time of writing, VOS has no built-in functions for dealing with fixed- or floating-

point decimal arithmetic. The FP RLL, available at no charge for DOS and Windows, provides

decimal arithmetic functions fp_add, fp_sub etc

21

6.8. Logical Conditions

VOS includes logical operations (and, or, not) and comparison operators (greater than, less

than...) which give logical results (True or False). True is represented as "1", False is represented

as "". Logical operators which combine two True / False values include

Operación Expresión

AND logical Left And Right

OR logical Left or Right.

NOT logical not Right.

Comparison operators

Operación Expresión

Greater than Left > Right

Greater than or equal

Left >= Right

Less than Left < Right

Less than or equal Left <= Right

Equal numerically Left eq Right

Not equal numerically Left <> Right

Equal as string Left streq Right

Not Equal as string Left strneq Right

Equal as string Left streq Right

22

Samples:

 “001” eq “1” True

 “001” streq “1” False !!!

 “*” eq “#” True !!!

6.9. Assignments

The operator = (assignment) is a special case of an operator. The left-hand side must be a

variable (or array element). The right hand side is any expression. The following are examples of

valid assignments:

x = 1;

 Month = 3;

 MonthName = "March";

 TotalSeconds = Hours*3600 + Mins*60 + Secs;

There are other assignment operators which can be useful: +=, -=, *= and /=. The most

often used is +=, which could be described as "add to". For example,

n += 1;

adds 1 to n. The expression on the right-hand side is evaluated, and the value is added to the

variable on the left. In a similar way, -= is "subtract from", and so on. Since adding and subtracting

1 is so common, further short-hands ++ and -- are provided. They work like this:

x++ Add one to x, result is x before adding one.

++x Add one to x, result is x after adding one.

x-- Subtract one from x, result is x before subtracting.

--x Subtract one from x, result is x after subtracting.

23

You don't have to care about the result if all you want to do is add or subtract one from a

variable. For example, the two alternative statements:

x++;

++x;

have exactly the same effect. The result matters if you use the result later in executing a

statement, as in:

x = 8;

 y = x++; # y=8, x=9

 x = 8;

 y = ++x; # y=9, x=9

Notice that different values are assigned to y. If you find +=, ++ and friends confusing, you

can forget all about them; you can always achieve the same result using plain old =. If you're a C

programmer and find them convenient, go ahead.

6.10. String Concatenation

The & operator combines two strings by placing the characters of the right hand side

following the characters of the left hand side. This is called string concatenation. For example,

"A" & "B" gives "AB". For another example:

FirstName = "Joe";

 LastName = "Smith";

 FullName = FirstName & " " & LastName;

This results in FullName being assigned "Joe Smith".

24

Important

Note that string concatenation is one of the strongest operators. This can lead to subtle errors

when used together with arithmetic operators. See the following for an example.

The expression:

x = "Result is " & 2*2;

will assign "0" to x! This is because & is stronger than *, so concatenation is done first, giving:

x = "Result is 2"*2

But "Result is 2" is zero when converted to a number (because the first character is not a digit),

so the final expression becomes 0*2 = 0. To make sure that the multiplication is done first, you

can use parentheses:

x = "Result is " & (2*2);

25

6.11. Loops

A loop is a way to repeat one or more statements. The VOS language includes three

types of loop: for, do..until and while. The choice is mostly a matter of style and taste, any given

task that needs a loop can be written using any of the three types.

The syntax is as follows:

for (initialize ; test ; increment)

 statements

endfor

 do

 statements

 until (test);

 while (test)

 statements

 endwhile

The text shown in italics is replaced by appropriate code:

statements

One or more statements (which may themselves be loops) which are executed zero or

more times as the loop repeats.

initialize

An expression which is executed once before the for loop starts. In the case of the for

loop, this may be left blank if not required.

26

test

A logical condition which is evaluated each time through the loop and determines

whether the loop continues executing. In the case of the for- and while-loop, it is evaluated

before each loop, if True the loop continues to run. If test is False the first time through, the

statements inside the loop are never executed. In the case of the do..until loop, the loop continues

until the test is True. In the case of the for loop, the test may be left blank, in which case the

value is always assumed to be True and the loop repeats for ever, or until exited by means of a

goto, jump or return statement.

increment

An expression which is executed once at the end of each iteration through the for-loop. If

the test is False the first time through the loop, the increment is never executed. In the case of a

for loop, this may be left blank if not used.

The most common example of a loop is stepping through all values of a variable from 1

to an upper limit, say Max. The following loops all compute the sum 1+2+...+Max using a

variable n:

Sum = 0;

for (n = 1; n <= Max; n++)

 Sum = Sum + n;

endfor

Sum = 0;

n = 1;

while (n <= Max)

 Sum = Sum + n;

 n++;

endwhile

Sum = 0;

n = 1;

do

 Sum = Sum + n;

 n++;

until (n > Max);

27

A loop which repeats for ever (or until exited by a break) may be written using a for-

loop:

for (;;)

 # ...

endfor

or a while-loop:

while (1)

 # ...

 endwhile

Remember that True is represented as "1", so the while test is always True.

28

6.12. Calling Functions

A function is a sequence of statements which has a name and produces a value. A function

can have one or more "arguments," also called "parameters." Arguments are values which are copied

into the function, inside the function arguments are referred to by names which behave very like

variables except that they may not be assigned values.

There are three types of functions in VOS:

• Built-in functions. These are functions which are "hard-coded" into VOS and vlc,

and are therefore always available to be used in a program.

• User-defined functions. These are functions which are written in VOS source

code.

• RLL functions. These are functions which are written in C or C++. They are

loaded from binary files called Runtime Link Libraries (RLL). On DOS, an RLL is

a TSR. On Windows, an RLL is a DLL.

The syntax for calling a function is the same for all three types of function. The name

of the function is given, followed by a list of arguments in parentheses, separated by commas. If

there are no arguments, the parentheses must still be given. Here are some examples of calls to

functions:

29

vid_write("Hello"); # Built-in function

 MyFunc(); # User-defined

 code = Fquery(queue, index); # RLL

Since the syntax is exactly the same, you can't tell from the call to the function whether

it is built-in, user-defined or in an RLL.

When a function name is used in an expression, the function is executed (this is known

as "calling the function") and the value produced by the function (the "return value") is obtained.

The name of the function its list of arguments is thrown away and replaced by the return value.

All functions return values. If no return value is specified, an empty string (string

containing zero characters, written as "") is returned. Many functions such as vid_write don't return

any useful value, vid_write always returns an empty string. If the return value is not used in the

statement, as in:

vid_write("Hello"); # Return value not used

then VOS simply ignores the return value. If a useful value is returned, it may be used

in an expression. For example, suppose that a function named MyFunc requires two arguments and

returns a value. Then the following are valid statements:

MyFunc(1, 2); # Ignore return value

x = MyFunc(1, 2); # Store return value in x

Use return value in expression:

y = x*MyFunc(1, 2) + z;

The arguments to a function may be constants, variables or expressions. The following

are all valid:

30

MyFunc(1, 2); # Constants

 MyFunc(x, y); # Variables

 MyFunc(z, y+123); # An expression

An expression used as a function argument may itself contain function calls. Like most

other features of the VOS language, "nesting" or "recursion" to many levels is permitted.

6.13. Functions and Library Files.

There are several ways to manage user functions in VOS: Functions files and library

functions files.

Functions files are normally text files with the same name of the function that

implements and with the extensión .FUN. Example:

File add.fun

func add(arg1,arg2)

 return arg1+arg2;

endfunc

31

 Library functions files are files with .vl extension. This files groups a collection of file

functions (.FUN). Using mkvl command you can create this libraries with or without encryption

option.

mkvl <fich. Definition> <file lib>

 The definition file es a text file with references to .FUN files

 func1.fun

 func2.fun

 \PROJ\FUNCS\LongFunctionName.fun

 E:\SHAREDF\PROJ\OtherLongName.fun

6.14. Include Files

A source code file may include the complete contents of another file by using the include

statement. This is typically used to include standard lists of constant declarations. For example:

dec

 include "project.inc"

 var MyVar : 2;

 enddec

32

6.15. Internal Functions

VOS includes an extensive range of built-in functions. In this section we will give a brief

overview of some of the important groups of functions:

6.15.1. Database

The db_ functions support database and index access using dBase-compatible DBF

database files and Clipper-compatible NTX indexes. Databases can be opened and closed on

the fly, one task may have several databases open at one time. Multi-user file and record locking

is supported. Other database types are supported through RLLs, the details vary by operating

system.

We recommend to use our Database Access RLLs , like AdoRll for any systems. With

AdoRLL we can use SQL sentences in order to update /retrieve information to/from the

Database Server (Informix, Oracle, SQL Server, etc.)

6.15.2. Serial Communication

The ser_ functions support RS-232 serial communication through ports COM1 to COM4

6.15.3. Task Management

There are several built-in functions for managing tasks, including spawn, chain, exec, arg,

getpid and kill.

33

6.15.4. Inter-Task Communication

VOS provides four methods for communicating between tasks: global variables (glb_

functions), semaphores (sem_ functions), messages (msg_ functions), and groups (grp_

functions).

This is covered later on the manual.

6.15.5. String Manipulation

There is an extensive set of functions for manipulating strings, including length, substr

and many others. See String Functions for more information.

6.15.6. Screen and Keyboard

The vid_ and kb_ functions provide for simple screen output and user input to a VOS

program. Under Windows, you will probably want to create a graphical user interface--this is

best done using the NetHub ActiveX to create the interface using Visual Basic, Delphi, Visual

C++ or other Windows visual tool.

34

6.16. External Functions

All the VOS external functions are developed in C/C++. These functions are

DLLs with some special entrypoints to inform VOS about the internal functions inside

this DLL. We use to call these DLLs like RLLs (Runtime Link Libraries). We

provide a C/C++ developers kit that allows you to create your own RLLs using any

C/C++ Windows Compiler (Visual C++, Borland C++ Builder, etc…).

 Below you’ll see a list of the most common used RLLs:

6.16.1. NetHub Plus RLL.

NetHub Plus is an enterprise component which supports communication between

threads in a single process, processes in a single PC and/or nodes on a local or wide-area

network.

 NetHub Plus is available both as an ActiveX control and as a VOS RLL.

An instance of NetHub Plus can communicate with one or more other instances of

NetHub Plus, either on one PC or across a network.

The VOS RLL loads a separate instance of NetHub Plus ActiveX for each VOS task.

Messages

Each instance of NetHub Plus can send and receive messages to and from any instance

of NetHub Plus. Messages, which are strings of up to 127 characters, can be received with the

MsgGet method or via the MessageReceived event.

35

Semaphores

Semaphores can be used to protect shared resources and critical sections of code. A

semaphore is a special kind of variable that has two possible values: set or cleared. If a NetHub

Plus instance sets a semaphore, no other instance may set it until it is cleared. A semaphore may

only be cleared by the instance that set it.

Shared NetVariables

Shared NetVariables contain data (in variable-length strings) that is accessible to any

instance of NetHub Plus on the network. NetVariables are identified by a name and an index

number. The index number is similar to an array subscript. The maximum length of a shared

NetVariable string is currently 127 characters.

Semaphores and NetVariables are identified by names. A name is a string of 1 to 127

characters. The first character must be a letter or underscore, the remaining characters may be

letters, underscores or digits.

6.16.2. Ado RLL

The ADORll is an RLL which provides direct access to Database servers via ActiveX

Data Object (ADO) and Open Data Base Connectivity (ODBC, jet) respectively.

We strongly recommend to use ADO Ole DB providers instead of ODBC

providers because of stability and performance issues.

36

6.16.3. Socket RLL

The Sockets RLL makes it possible to send and receive messages to VOS tasks

running on remote PCs connected via an IP network. The IP network could be an intranet,

the Internet, a Novell network running TCP/IP or any other network which supports IP.

The RLL supports Windows NT only; it does not run under Windows 9x.

 The Sockets RLL uses port number decimal 2222 (hex 8AE) by default. To change the

connection port number, use ws_SetRemotePort.

6.16.4. Web RLL

WebRLL is a Runtime Link Library (RLL) for VOS.

WebRLL provides functions which enable your VOS program to:

• Get documents from a Web server
• Get data from active Web pages (e.g. from an e-commerce server)
• Send and receive files via FTP

Web Server
(IIS, Apache
Server, etc)

Serving pages
like ASP,
ASPX, JSP,

DB Server

Internet or Intranet

Web Clients
like IE, or
NetScape

37

6.17. Multi-tasking

VOS is able to run a high number of lines simultaneously. VOS has its own

Multithreading engine to manage each task. A simple VOS application for one channel:

dec
 Var linea:2;
enddec
program

linea = arg(1)
TrunkUse(linea);
MediaPlayFile(linea,”bienveni.wav”);
restart
end

Task 1

DB Server

Internet or Intranet

IVR System

Intel/Dialogic
Card

PSTN

http
protocol

http
protocol

http
protocol

Web Server
(IIS, Apache
Server, etc)

Serving pages
like ASP,
ASPX, JSP,

CT ADE RUNNING
with WEBRLL

38

The previous figure shows a simple VOS task for only one channel. If we want to use this

program to manage 4 lines, we will have to:

Now we have 4 tasks running inside VOS. From the beginning we had only one task that

spawned 4 tasks passing one argument (the channel number) to each other. The function arg(1) retrieves

the argument number 1. In that case, arg() is the channel number.

There are 2 ways to spawn VOS tasks: synchronously and asynchronously. To spawn

tasks asynchronously we will use:

task_nr = spawn(filename[, arg, arg...])

To spawn tasks synchronously we will use:

string = exec(program_name[, arg, arg...])

dec
 var i:2;
enddec

for(i=1;i<=4;i=i+1)

 spawn(“task”,i);
endfor

Task 1
Line:1

Task 2
Line:2

Task 3
Line:3

Task 4
Line:4

39

6.18. Task Management.

As we saw in the previous chapters, VOS is able to manage several tasks simultaneously

for multichannel applications or to perform “backgroud” tasks. Each VOS task has its own group of

variables and arrays, and its own execution path.

There are some basic concepts to manage VOS tasks.

6.18.1. Task number.

Each executing task has a unique task number, which may be 0, 1, ... The task number is

sometimes called the process id or pid, a hang-over from UNIX terminology where a task is

known as a process. The getpid function returns the task number of the current task, for example:

my_task_nr = getpid();

6.18.2. Suspending a Task

The current task may be suspended at any given time by calling the sleep function. The

argument is the length of time to wait before resuming execution, in tenths of a second. For

example,

sleep(50); # Wait five seconds

The sleep period must be less than 12 hours, i.e. less than 432000.

A task which has been "put to sleep" takes no processor resources at all (VOS v5 or

later). This means that performance problems which might be caused by polling loops can be

40

alleviated by adding a short sleep to the loop. For example, if a task is waiting for a global

variable to change value or for an incoming call:

while (glb_get(0) strneq "NEW" and not TrunkGetState() strneq “Idle”))

 sleep(2);

endwhile

6.18.3. Killing a Task

A task which is executing may be killed using the kill function, which takes a

task number as an argument:

kill(condemned_task_nr);

The task will be killed immediately unless it has been suspended awaiting the

completion of a built-in function such as sleep, sem_set, sc_play etc. In the case where

the task has been suspended, it will be killed at the point where the built-in function

currently in progress completes.

The return value from kill indicates the success of the operation:

-1 Invalid task number (this has never been an active task).

0 Task was suspended, has been scheduled to die when current function

completes.

1 Invalid task number (task was once active but has now stopped).

 Task killed immediately.

41

6.18.4. Semaphores, messages and global variables

In a multi-tasking environment like that provided by VOS, tasks usually continue their

execution independently of each other. Sometimes, however, it is necessary for tasks to

coordinate their activity or to communicate information.

There are four sets of functions in VOS which are provided for inter-task features:

• Semaphores

• Messages

• Globales Variables

Semaphores are usually used to manage what are called "critical sections" of code. A

critical section is a sequence of code which may fail if two tasks are executing the same piece of

code at the same (or close to the same) time.

sem_set(SemNr) Sets the given semaphore number, waiting for it to clear if the semaphore

has already been set by another task.

sem_test(SemNr) Tests the semaphore and sets it if it's not already set (don’t wait)

sem_clear(SemNr) Clears the given semaphore, if it has been set by the current task.

sem_clrall Clears all semaphores (if any) owned by the current task.

Sample

sem_set(1);

 # Update Critial-Zone

sem_clear(1);

42

There are 2 kinds of semaphones: Number semaphores or Named semaphores. The

Named semaphores are semaphores that you can refers using a name. The following list show us

the functions to manage named semaphores:

sem_setx(SemName) Set semaphore, waiting until it clears if needed.

sem_testx(SemName) Set semaphore only if it is clear (don't wait)..

sem_clearx(SemName) Clear semaphore

sem_clrall x Clears all semaphores owned by this task.

The Messages are sent between task using msg_ functions. With these functions we are

able to send and receive string messages among VOS tasks.

code = msg_put(pid, string);

string = msg_get(seconds);

pid = msg_pid();

name = msg_sendername()

msg_flush()

The Global Variables are very useful in order to share information between VOS tasks.

The functions to use this Global Variables are as follow:

Globales Variables

glb_get value = glb_get(num)
 Gets the current value of the given global variable number

glb_set glb_set(num, string)
 Sets the global variable to the given string

Named Globales Variables

glb_clrallx glb_clrallx(Name)
 Sets all values in the global to an empty string.

glb_decx glb_decx(Name[,Index1, ...])
 Subtracts 1 from value in a Named global variable

glb_dimx glb_dimx(Name[,Lower1,Upper1, ...] [,MaxLength])
 Creates a new Named global variable

43

glb_getsizex glb_getsizex(Name)
 Returns the MaxLength for this global specified in the call to glb_dimx

glb_getx glb_getx(Name[,Index1, ...])
 Get a value from a Named global variable.

 glb_incx b_incx(Name[,Index1, ...])

Adds 1 to value in a Named global variable.

glb_lowerx lb_lowerx(Name[,DimNr])
 Returns the lower limit on the index for the given dimension number as specified in the call to glb_dimx

glb_nrdimsx lb_nrdimsx(Name)
Returns the number of dimensions of the global variable. Returns 0 for a scalar, 1 for a vector, 2 for a matrix
and so on.

glb_rangex lb_rangex(Name[,DimNr])
 Gets the index range for the given dimension number (zero is assumed if not given)

glb_setallx b_setallx(Name, Value)
 Sets all strings in the given global to the given value.

glb_setx b_setx(Name[,Index1, ...], Value)
 Sets a string in the given global to the given value.

glb_upperx lb_upperx(Name[,DimNr])

Returns the upper limit on the index for the given dimension number as specified in the call to glb_dimx.

6.19. Date and Time Functions.

In IVR systems is very common to use dates and times for certains taks (for example, the

duration of the call). The dates&time functions in VOS are as follow:

FUNCION SINTAXIS DESCRIPCIÓN

date() YYMMDD = date()

YYYYMMDD = date(1)

Returns the current machine date as a six-
character string YYMMDD or as an eight-
character string YYYYMMDD.

Dateadd() New_Date=Dateadd(old_date,days) Adds or subtracts a given number of days
from a date, and returns the resulting date.

Datecvt() Datecvt(fecha,tipo) Converts a date from YYMMDD or
YYYYMMDD format to indicate either
the day of the week or the day number
within the year (from 0 to 364 or 365).

0 Returns the day of the week

44

1 Returns the day of the year

Ticks() Tick_count = ticks() Returns the current BIOS tick count.

Timeadd() YYMMDDHHMMSS=timeadd(fecha,hor
a,segundos)

Returns the date and time resulting from
adding seconds to the given starting date
and time.

Timesub() Segundos=timesub(fecha1,hora1,fecha2,h
ora2)

Returns the difference in seconds between
two dates (1 - 2) which are specified in
YYMMDD, HHMMSS format.

Time() HHMMSS=time() Adds time to date.

Tmr_sec() Segundos=tmr_sec() Returns the number of seconds which has
elapsed since the most recent call to
tmr_start by the current task.

Tmr_start() Tmr_start() Starts a timer for the current task

6.20. String functions

ascii_code = ctoi(character) Returns the ASCII value of the first character in the string argument

string = itoc(integer_value) Converts an integer value to a string. The returned string contains one byte,

the byte has the specified integer ASCII value

hexstr = itox(integer_value) Converts the integer value to a hexadecimal value.

nrchars = length(string) Returns the number of characters in its argument string.

newstring = ljust(string, char, width) Left-justifies the string argument, padding on the right with the first

character in the char argument to create a string of length width

 newstring = rjust(string, char, width) Right-justifies the string argument, padding on the left with the first

character in the char argument to create a string of length width

 comp = strcmp(string1, string2) Returns a value based on an alphabetical ("lexical") comparison between the

two strings. The comparison is done character by character using the ASCII

codes for each character. The return value is > 0, 0 or < 0 depending on

whether string1 is greater than, identical to or less than string2 using this

method of comparison.

 yes_or_no = strcnt(string1, string2) Returns 1 (true) or an empty string (false) if string1 contains string2 as a

substring

 new_string = strend(string, count) Returns the last count characters in string. If count specifies more characters

than the length of the string, the whole string is returned.

index = strindex(str, str1, str2, str3 ...) Returns the index 1, 2, 3 of the first string str1, str2 … to match str, or 0 if

45

the string is not found in the list.

new_string = strltrim(string)

 new_string = strltrim(string, char) Returns the string obtained by stripping leading characters from the string

argument. If not specified, the char argument defaults to a single blank, " ".

If char is given, the first character in char is stripped.

new_string = strlwr(string) Converts any upper-case, English characters to lower case and returns the

resulting string.

pos = strpos(string, substring) Returns the position of the substring within the string, or zero if the substring

 is not found in the string

new_string = strrtrim(string)

new_string = strrtrim(string, char) Returns the string obtained by stripping trailing characters from the string

argument. If not specified, the char argument defaults to a single blank, " ".

If char is given, the first character in char is stripped.

string = strselect(index, str1, str2,) Returns str1 if index is 1, str2 if index is 2, and so on.

If index is < 1 or > number of string arguments given, then an empty string is

returned.

new_string = strstrip(string[, char]) Removes every occurrence of the given character within the string, and

returns the resulting string. If no character is given, blank is assumed. The

character is specified as a string of length one.

new_string = strupr(string) Converts any lower-case, English characters to upper case and returns the

resulting string.

 substring = substr(string, from[, chars]) Forms a substring of the first argument, starting at character position from

and taking the next chars characters (defaults to the rest of the string if chars

is not specified). Character positions are numbered from one

integer = xtoi(hex_value) Converts a hexadecimal value to a decimal value

46

6.21. File and Directory Functions (fil_, dir_)

VOS provides a number of built-in functions for reading, writing and searching files and

directories. Any file which is "visible" to a command prompt, including network server files, can be

accessed through these functions

find_end() Ends the directory search started by dir_first. Must be called

 following a dir_first before the current or any other task can

begin a new directory search, even if dir_first returned an error.

filename = find_first(pathname, attributes) Starts a directory search of the given path name, which may

include drive and pathname components and which may include

DOS wildcards (? and *) in the final name part of the path.

The attributes argument includes one or more of the following

characters indicating the attribute(s) of the files to be found:

 n Normal file

 r Read-only file

 h Hidden file

 s System file

 v Volume label

 d Sub-directory

 a Archive bit set

If successful, dir_first returns the file name (only the name.ext

part, without any preceding directory path or drive). If the path or

47

file given was not found, or if another task (or the current task) is

currently performing a directory search, the return value is "?". To

complete a directory search, dir_end must be called.

filename = find_next() Returns the next matching file as given to dir_first, or "?" if no

further files can be found or if no valid call has been made to

dir_first.

free_bytes = dos_diskfree(drive) Returns the number of bytes free on the given drive. The drive

argument specifies the drive: zero means the current drive, 1

means drive A:, 2 means B:, 3 means C: and so on.

code = dos_mkdir(directory) Attempts to create the given directory, which may be a path name

and may include a drive letter.

code = dos_rmdir(directory) Attempts to remove the given directory, which may be a path

name and may include a drive letter.

code = fil_close(file) Closes the given file, returns 0 if successful, a negative error code

if the file handle file is not valid.

fil_closeall() Closes all files (if any) opened by the current task.

code = fil_copy(source, target) Copies source file to target file. Both source and target file names

may include drive and/or path components.

code = fil_delete(name) Attempts to delete the file with the given name.

bool = fil_eof(file) Returns 1 if the file position is at or past end-of-file for the given

file, 0 if the position is not past the end of the file, or a negative

error code if file is not an open file handle.

line = fil_getline(file_handle) Returns the line starting at the current file position, an empty

48

string on error.

info = fil_info(name, infotype) Returns information about the file with the given path name.

Returns one of the following, determined by the info argument, or

an empty string if the file does not exist.

Options for infotype are:

 1 File size

 2 Date YYMMDD

 3 Time HHMMSS

 4 Directory/file ("D" or "F")

 5 Read only? ("Y" or "N").

code = fil_lock(File_handle, Position, Bytes) Attempts to lock the given region of the file.

file = fil_open(name, mode) Opens the file with the given path name, which may optionally

include drive and directory components, with the given mode.

code = fil_putline(file_handle, line) Attempts to write the string in the line argument to the end of the

file, appending carriage-return and line-feed control bytes (DOS,

Windows) or carriage-return byte (UNIX) to terminate the line

bytes_read = fil_read(file_handle, buf, bytes_to_read) Attempts to read bytes_to_read bytes from the given file into the

given buffer.

code = fil_rename(oldname, newname) Renames the file with name oldname and gives it name newname.

pos = fil_seek(fil, pos, mode) Moves the position of the given file according to the mode

argument, which should be one of the following values

code = fil_setsize(file, bytes) Sets the size of the file to the given number of bytes. If the

number of bytes is less than the current file size, the file will be

truncated. If the number of bytes is longer than the current file

size, the file will be extended with "random" data (i.e., data

currently residing in currently unassigned sectors).

49

code = fil_unlock(file, address) Clears a lock in the file

bytes_written = fil_write(file, buf, bytes_to_write) Attempts to write the given number of bytes from the given buffer

to the given file.

code = fil_writes(file, string) Attempts to write the given string argument at the current file

position in the file.

50

6.22. Graphical VOS, Introduction

When we first execute Graphical VOS we see this screen:

Here we can see a new concept called PROJECT. This is new for developers using previous

VOS releases. The Project, like other programing tools in the market (Visual Basic, Visual C,

Borland C++ Builder, etc..) contains all the necessary files to create the desired application. A VOS

project includes:

• VOS Source Code (.VS)

• Flow Charts (.flw)

• RLLs associated to the project.

• INC , FUN, DEC, VL Files.

The VOS Source Code (.VS) files are text files that contains source code in VOS language.

Each VOS Source code file become part of the project in a folder called Application with the follow

format: Application+ Vos Source Code name:

51

In every folder we can have references to include files (.inc), function files (.fun), declaration

files and function library files (.vl).

The Flow charter (.flw) files refer to Flow Charting CTI applications. For example:

6.23. Graphical VOS. Firsts steps

Now, let´s create a new Vos project to see the configuration and customisation process.

After we create a new VOS Project, we will have a folder application called master.

Very Important !!! Please, never remove the reference to the program master

because it is required by VOS!

Once we have reached this point, we can add/delete/edit Flow Charting and VOS

applications using the New function from the File menu.

52

6.24. Graphical VOS. Basic Configuration.

Let’s first configure the Trunks in the system (menu Project-> Configure Trunks).

In the Main Trunk Configuration screen there is a Tab called Trunk Configuration. This tab is used to

add an application for each channel as well as the type of the program associated to this channel. There

are 3 types of programs:

1. Fixed: This is the default type program. Whenever an inbound call comes

in through that channel, VOS will execute this program.

2. ANI: For the selected range of channels, VOS will execute the

applications whose ANI appear in the tab “ANI Phone Number

Assignment”

53

3. DNIS: For the selected range of channels, VOS will execute the

applications whose DNIS appear in the tab “DNIS Phone Number

Assignment”

Tab ANI and DNIS are used to control the application that will execute depending on

the ANI or DNIS received. A typical example is 900 audiotext systems with different services

in differents DNIS.

For the rest of the DNIS or ANIS (that we don´t have listed) we can associate a program

or just to refuse the call.

6.25. Graphical VOS. Executing the application

The menu option “Run” includes all the options to required to compile and execute the

VOS program. The compiler process is the task where VOS checks and translates from VOS

54

code to p-code. VOS will compile each application in the project. The compilation application

is called: VLC8.exe1

During the compilation process, there is a state window that displays status, errors and

warnings generated during compilation and linking:

Once the program is compiled (without errors) the application is ready to execute.

During Execution, VOS will launch the VOS.exe application that it will interpret the

compiled VOS code. To do that we could use the F5 key or the arrow

1 VLC8.exe and VOS8.exe can be configured in the menu Project->Options.

Compiling program VOS source code Line that is
generating the error

Error description

55

The VOS Runtime has several configurations:

6.25.1. User Interface .- Configuration

When VOS starts, the default user interface is a dialog called the VOS Control Panel. The

VOS Control Panel looks like this:

 There is a reference to the current file .VOS in the task bar.

 The configuration for the compiler (vlc) and the runtime (vos) is done in two files:

VOS.ini and the files with the extension .VOS.

6.25.1.1. Configuration file .VOS

Starting with version 7, VOS and VLC settings are consolidated into two files: the

VOS.INI and a new file type called a VOS Settings file and given the .vos extension.

A Settings file is very similar to an INI file, except that while the VOS.INI file applies

to every time instance of the VOS runtime engine, you can have a different Settings file for each

of your VOS projects. When you run a VOS program, you can specify which settings file to use.

If you haven’t explicitly specified a settings file, VOS uses the default Settings file specified in

the [Settings] section of VOS.INI. Moving the Settings file out of the Windows directory and

allowing an arbitrary filename makes it easier to work on several different systems on a single

PC.

56

The VOS Settings file format is based on the Windows INI format, and internally VOS

and VLC use the Windows API functions for manipulating INI files, so the same syntax for

specifying section names, key names, values and comments all apply.

This file can be edit from three places:

• From the Graphical VOS, Menu -> Project->VOS Settings.

• From the VOS Control Panel, right button click.

• Using NotePad and editing the .VOS ini file directly.

Sections in the Settings file include

[AutoStart]

The [AutoStart] section of the VOS settings file specifies up to 16 .vx

files to be loaded when VOS is started using this settings file. For example:

[AutoStart]
VXProgram1=C:\VoiceMail\VX\Master.vx
VXProgram2=Q:\Shared Vos Files\VX\Database.vx
VXProgram3=Q:\Shared Vos Files\VX\Pager.vx

[Buf]

The [Buf] section of the VOS settings file lets you set the number of buffers for

the buf_use family of functions.

buf_use. Sample.

 Count = 10

57

[Colors]

The [Colors] section of the VOS settings file stores the 16 custom VOS

Box colors you can set with the VOS Control Panel.

Entry Meaning

Custom0 Custom color 0.

Custom1 Custom color 1.

Custom2 Custom color 2.

Custom3 Custom color 3.

Custom4 Custom color 4.

Custom5 Custom color 5.

Custom6 Custom color 6.

Custom7 Custom color 7.

Custom8 Custom color 8.

Custom9 Custom color 9.

Custom10 Custom color 10.

Custom11 Custom color 11.

Custom12 Custom color 12.

Custom13 Custom color 13.

Custom14 Custom color 14.

Custom15 Custom color 15.

The format of the custom color specification is the hex value of a Win32 RGB value.

[Consts]

The [Consts] section of the VOS settings file specifies constants that are

declared when VLC is started.

[Consts]
Const1=<Name>[:Value]

58

Const2=<Name>[:Value]
... etc. for Const3, Const4, ...

[DateTime]

 The [DateTime] section of the VOS settings file lets you override

VOS's daylight savings time settings.

Entry Meaning

DST Set to 0 to indicate that standard time is in effect, or to a value greater than
0 to indicate that daylight savings time is in effect, or to a value less than
zero to have VOS compute whether standard time or daylight savings time
is in effect for the given date.

[DBF]

The [DBF] section of the VOS settings file lets you set VOS parameters

for working with DBF databases.

Entrada Significado

AllowUnsafe 2 Unsafe db_fput calls allowed? 1=Yes 0=No

MaxBases Maximum number of active bases.

MaxBaseHandles Maximum number of base handles

(formerly known as descriptors).

MaxFields Maximum number of fields in one database.

MaxRecHandles Maximum number of record handles

(formerly known as descriptors).

MaxRecBytes Record length. db_reclen must be larger

than the database record length. Use

dmpdbf.exe to examine the database record

length.

MaxRecs Maximum number of active records.

2 AllowUnsafe must be set to 1 to allow sharing. The main use for this parameter is to allow backwards-compatibility with
applications which were designed to share handles across tasks.

59

[Exceptions]

The [Exceptions] section of the VOS settings file controls exception handling.

Entry Meaning

Handler The possible values of Handler are 1 and 2, where 1 means that VOS will
not do any exception handling or logging, and 2 means that VOS will
handle the exception (log the stack trace of the exception in
EXCEPT.RPT file) and exit immediately with the ERRORLEVEL 3,
which can be used in batch files.

The default VOS behavior in case of an exception is to log the stack trace
of the exception in EXCEPT.RPT file and pass the control to the next
exception handler in line, which in most cases will be Dr.Watson or
Visual C++ debugger.

[File]

The [File] section of the VOS settings file lets you set file and record

locking parameters for DBF database files.

Entry Meaning

MaxLocks Maximum number of file locks.

[FunFileDirs]

The [FunFileDirs] section of the VOS settings file lets you specify up to

eight directories in which VLC should search for function files.

Entry Meaning

Dir1 First function file path name.

Dir2 Second function file path name.

60

...

Dir8 Eighth function file path name.

VLC checks the directories from Dir1 to Dir8--for example, function

files in the Dir1 directory would have precedence over files in the Dir2

directory. This is important to understand particularly if you have functions of

the same name in two of the specified directories. Suppose you have two files

named myfunc.fun, one in the C:\functions directory, and the other in

D:\functions. If the Settings file for your project looks like this

[FunFileDirs]
Dir1=D:\functions
Dir2=C:\functions

when your program compiles, VOS will use the function stored in the

D:\functions directory

[Glb]

The [Glb] section of the VOS settings file lets you set parameters for numbered

global variables.

The following entries don't affect named global variables.

Entry Meaning

Count The maximum number of numbered global variable to allow.

VarBytes The maximum size of each numbered global variable, in bytes

[GUI]

The [GUI] section of the VOS settings file lets you control the appearance

of the VOS user interface. You can set these entries through the VOS Control

Panel User Interface dialog.

61

Entry Meaning

AboutBoxText String that appears in the VOS About Box.

CtlPanelTitle Sets the title for the Control Panel.

ConfirmStop Should a dialog box confirm before stopping VOS? Set
to 1 to see the confirmation. Set to 0 to stop without a
confirmation dialog.

EnableDialogs 1 enables, 2 disables dialogs. By default, VOS ensables
all dialogs (message boxes). Disabling dialogs allows
VOS to exit immediately, without waiting for the
operator to click OK.

ShowCtlPanel Should VOS display the Control Panel when running?
Set to 1 to show the Control Panel, or 0 to hide it.

StopIfNoTasks

Should VOS stop if there are no tasks running? Set to 1
to stop or 0 to continue running if there are no tasks
running.

[IncludeFileDirs]

The [IncludeFileDirs] section of the VOS settings file lets you specify up

to eight directories in which VLC should search for include files.

Entry Meaning

Dir1 First include file path name.

Dir2 Second include file path name.

...

62

Dir8 Eighth include file path name.

VLC checks the directories from Dir1 to Dir8--for example, include

files in the Dir1 directory would have precedence over files in the Dir2

directory. This is important to understand if you have files of the same name in

two of the specified directories. Suppose you have two files named project.inc,

one in the C:\include directory, and the other in D:\include. If the Settings file

for your project looks like this

[IncludeFileDirs]
Dir1=D:\include
Dir2=C:\include

when your program compiles, VOS will use the file in the D:\include directory

[Load]

The [Load] section of the VOS settings file lets you control which DLL

VOS loads by default.

The name and path of the Debug and Non-debug DLLs are set in the

[DLLs] section of the VOS.INI file.

Entry Meaning

DebugDLL Should VOS load the Debug DLL (that is, start in Debug
mode) by default? Set to 1 to start in Debug mode or to 0 to
start in Non-debug mode by default.

[Log]

63

The [Log] section of the VOS settings file lets you set parameters for the

VOS log file.

Entry Meaning

Append Should new log file entries be appended to an existing log?
Set to 1 to append new entries or to 0 to overwrite any old log
when you start VOS.

Buffer Boolean. Set to 1 to enable buffering or 0 to disable buffering.

If Buffered, VOS keeps > 1 line of log output in memory and
writes a bunch of lines at one time. If not buffered, VOS
writes each line as it comes.

Commit Boolean. Set to 1 to commit the log file to disk each time a
line is written. (Committing is the equivalent of asking
Windows not to buffer.) Commit=1 is required only if
Windows doesn't complete a write in the case of a crashed
process. This is usually not necessary because Windows will
write any buffered output to the file even if a process crashes.
Since this will be much slower, set to 1 only if really needed.

Dir Directory in which the vos?.log files are stored.

MaxSizeKb Sets the maximum size of the VOS log.

[Msg]

The [Msg] section of the VOS settings file lets you set message function

parameters.

Entry Meaning

MaxCount Maximum number of messages.

MaxChars Max characters in a message+1 for terminating nul byte

Msg_IntervalMs
.

64

[NTX]

The [NTX] section of the VOS settings file lets you set DBF database

index parameters.

Entry Meaning

Buffers Cache buffers per index: See Settings File Index
Requirements.

Clipper .NTX: 0=older VOS 1=free list 2=key sort 3=both

MaxKey Index field length: See Settings File Index Requirements.

MaxOpen Number of index

files: See Settings File Index Requirements.

PageErrFatal Is a page error fatal? Set to 1 to make a page error fatal or
0 to make page errors not fatal.

[Prio]

The [Prio] section of the VOS Settings file lets you set Windows

priorities for the VOS process, primary thread, and GUI thread. Windows

priorities are explained in detail in the MSDN Library--for more information, see

the SetThreadPriority and SetThreadPriorityBoost Win32 API functions in the

MSDN Library.

The SetThreadPriority and SetThreadPriorityBoost Win32 API functions

are called when VOS starts (using the values set in this section of the VOS

Settings file) and again when a setting is changed via the Control Panel Set

Priorities dialog--you don't have to restart VOS to change priorities.

65

Entry Meaning

GuiBoost

Enables or disables priority boosting for the VOS GUI
thread. Set to 1 to enable boosting or 0 to disable it.

See SetThreadPriorityBoost (a Win 32 API function) in
the MSDN Library for an explanation of priority
boosting.

GuiThread

Sets the priority value for the VOS GUI thread.

See SetThreadPriority (a Win 32 API function) in the
MSDN Library for information on thread priorities and a
list of valid priority values.

PrimaryBoost

Enables or disables priority boosting for the VOS
primary thread. Set to 1 to enable boosting or 0 to
disable it.

See SetThreadPriorityBoost (a Win 32 API function) in
the MSDN Library for an explanation of priority
boosting.

PrimaryThread

Sets the priority value for the VOS primary thread.

See SetThreadPriority (a Win 32 API function) in the
MSDN Library for information on thread priorities and a
list of valid priority values.

ProcessClass Sets the priority value for the VOS process class.

See SetThreadPriority (a Win 32 API function) in the
MSDN Library for information on thread priorities and a
list of valid priority values.

[R4]

The [R4] section of the VOS settings file lets you set parameters for

legacy VOS functions such as sc_, DTI_ etc.

If your application does not use these legacy functions, omit this section

from your settings file.

66

Entry Meaning

Enable Should VOS load the R4 drivers? Set to 1 to load the R4 drivers or
0 to not load them.

fxSendFiles Maximum number of fax files in a single FaxSend.

gcIEBytes Maximum number of bytes that will be used in an ISDN
information element.

scEnablePCPA Should the system use Perfect CPA? Set to1 to use Perfect CPA, or
to 0 otherwise.

scNshgup Should a continuous tone be treated as hang-up? Set to 1 to treat a
continuous tone as a hang-up, or to 0 otherwise.

scPhraseWords Maximum words in a phrase. Must be > 0 to use phrases

[RLLs]

The [RLLs] section of the VOS settings file lets you specify which RLLs

to load when running VOS or VLC.

Entry Meaning

RLL1 First RLL path name.

RLL2 Second RLL path name.

...

RLL8 Eighth RLL path name.

 [SearchPaths]

The [SearchPaths] section of the VOS settings file lets you set paths to be

searched for IPFs, Par files, and VX files.

67

If you want to list more than one path for one of the SearchPaths entries,

separate each path with a semicolon:

[SearchPaths]
IPF=.;.\IPF;c:\Projects\IPFs;

Entry Meaning

IPF Sets the path for locating Indexed Prompt Files.

Par Sets the path for locating PAR files.

VX Sets the path for locating .vx files in the VOS command line or started
via chain, spawn or exec.

[Sem]

The [Sem] section of the VOS settings file lets you set Semaphore

parameters.

Entry Meaning

Count Maximum number of numbered semaphores.

[Ser]

The [Ser] section of the VOS settings file lets you set serial port

parameters.

Entry Meaning

BuffKb COM port buffer size, in bytes.

Ports Number of COM ports to support.

68

Ser_IntervalMs The interval, in milliseconds, for polling serial ports (default = 50).

 [SRL]

The [SRL] section of the VOS settings file lets you set parameters for Standard

Runtime Library (SRL) events.

Entry Meaning

Srl_IntervalMs The interval in milliseconds for polling Dialogic SRL events
(default=25).

[Task]

The [Task] section of the VOS settings file lets you set task management

parameters.

Entry Meaning

MaxCount Maximum number of tasks.

MaxName Maximum length of VOS task names.

[Trace]

The [Trace] section of the VOS settings file lets you set tracing options.

Entry Meaning

ActiveX Should VOS provide detailed tracing of object accesses
(available in Debug mode only)? Set to 1 for this tracing, or
set to 0 to disable it.

Builtins Should VOS Trace all built-in functions? Set to 1 to trace or

69

to 0 to disable tracing of built-ins.

Drivers Trace API function calls.

InOut Trace both before and after function calls. This is useful
when a function call hard crashes VOS, normally functions
are logged only after they return, but if the function crashes
this will not show in the log.

Layer Log DOS-to-Windows translation layer for "legacy"
functions sc_, DTI_ etc.

OutputToVosBox Should tracing information be displayed in the VOS Box as
well as written to the log file? Set to 1 to display the tracing
information or to 0 to just write it to the log file.

Override Should the entries in this Settings file override tracing
options set with the trace() function in individual programs?
Set to 1 to override or to 0 to use the program's settings.

Pcode Should VOS trace all p-code instructions? Set to 1 to trace or
to 0 to disable p-code tracing. (P-code tracing will create a
large amount of logging.)

RLLs Should VOS trace all RLL calls? Set to 1 to trace or to 0 to
disable tracing of RLLs.

Stack Should VOS include the stack in p-code tracing? Set to 1 to
include the stack or to 0 to omit it.

Structs Should VOS trace API structure members? Set to 1 to trace
or to 0 to omit structures.

Vars Should VOS include variables in p-code tracing? Set to 1 to
include variables or to 0 to omit them.

70

[TrayIcon]

The [TrayIcon] section of the VOS settings file lets you control the

system tray icon that appears when VOS is running. You can set these entries

through the VOS Control Panel User Interface dialog.

Entry Meaning

Animate Should the tray icon be animated? Set to 0 to prevent
animation. Set to 1 to allow animation.

HWND Used internally by VOS.

Show Should the system tray icon show while VOS is running?
Set to 0 to hide the icon. Set to 1 to show the icon.

Tooltip Sets the text that appears in the tooltip when a user's mouse
is over the system tray icon.

[VLC]

The [VLC] section of the VOS settings file lets you set VOS Language

Compiler options.

Entry Meaning

GenerateDebugSymbols Should VLC generate debug symbols? Set to 1 to
enable or 0 to disable. By default, debug symbols
are enabled.

GenerateLineMarks Should VLC generate line marks? Set to 1 to enable
or 0 to disable. By default, line marks are generated.

ListFileName Specifies the name of the list file to create. If this
entry is not specified, no list file is created.

71

ReportUnusedVariables Set to 1 to enable or 0 to disable. By default, unused
variables are not reported.

LongFileNameSupport Should VLC use long file names when looking for
function files?

If set to 1, VLC uses the full function name as a
long file name. If not found, report an error. For
example, if a function is called MyFunction() VLC
looks for a file called MyFunction.fun

If set to 2, VLC uses the full function name as a
long file name. If the name is not found, truncate
the function name to 8 characters and look for that
.fun file. If not found, report an error. For example,
if a function is called MyFunction() VLC looks for
a file called MyFunction.fun. If VLC doesn’t find
MyFunction.fun, it looks for MyFuncti.Fun.

If set to 3, VLC always truncates the function name.
For our exaple function, MyFunction(), VLC only
looks for MyFuncti.fun.

By default, long file names are enabled.

StackDepth Set stack depth.

StackSize Set the stack size, in bytes. The default is 2048.

Verbose Display progress of compile, a value from 0 to 9, to
show increasing detail.

[VLs]

72

The [VLs] section of the VOS settings file lets you specify which VL files

to load when running VOS or VLC. A Vlc Library, file extension .VL, is a

collection of function definition (.FUN) files in one file.

[VLs]
Lib1=<VL path name>
... etc for Lib2, Lib3...

[VosBox]

The "VOS Box" window is a 25 x 80 character display that emulates the

appearance of an MS-DOS PC. It is provided for backwards compatibility with

older applications written for VOS for DOS.

The [VosBox] section of the VOS settings file lets you set options for the

VOS Box. You can also set these entries through the VOS Control Panel User

Interface dialog.

Entry Meaning

BkBlue Intensity of blue in background color (0 to 255).

BkGreen Intensity of green in background color (0 to 255).

BkRed Intensity of red in background color (0 to 255).

EnableCtrlBreak Should typing Ctrl+Break stop VOS? Set to 1 to enable or 0 to
disable. By default, Ctrl+Break is disabled.

Font Used to choose a font for screen display; this is necessary for
displaying international characters.

FontBlue Intensity of blue in text font color (0 to 255).

73

FontGreen Intensity of green in text font color (0 to 255).

FontItalic Should the font be italic? Set to 1 for italic, or 0 for regular.

FontRed Intensity of red in text font color (0 to 255).

FontSize Sets the font size, in points, for screen display.

FontWeight Font weight (see Win32 CreateFont function for valid values).

Show Should the VOS Box show when VOS is running? Set to 1 to
enable or 0 to disable.

ShowTime Should the VOS Box show the current time? Set to 1 to enable
or 0 to disable.

Title This string is used as the title for the VOS Box. If you don't
set a Title, VOS uses "VOS Box" by default.

6.25.1.2. File VOS.INI

74

The file VOS.ini stores configurations that affect VOS. These configurations are as

follow:

 [Settings]

 The Default entry in this section of the VOS.INI file points to the default Settings file:

[Settings]
Default=c:\Vos\Settings\Default.vos

[DLLs]

Entries in this section of the VOS.INI file point to the location of the Debug and Non-

Debug VOS DLLs.

[DLLs]
Debug=c:\Vos\Bin\Vosd.dll
NonDebug=c:\Vos\Bin\Vos.dll

 [Service]

Entries in this section of the VOS.INI file specify service dependencies and other

settings needed when running VOS as a Windows NT/2000 service.

[Service]
GroupName=VoiceMail
Dependencies=Dialogic;Telephony
GroupOrderTag=2

75

77.. CCTT AADDEE AArrcchhiitteeccttuurree ((TTooppaazz)) ,, IInnttrroodduuccttiioonn

The first question is: What is CT ADE Architecture (TOPAZ) ?

Before I answer this question I would like to review the problems posed by the CTI

applications.

When developing telephony applications, we need to keep in mind: Type of telephone

lines, type of boards and the differents API’s involved. There are 3 kinds of interfaces:

• Analog

• Digitals (R2, ISDN, SS7, etc…)

• IP (Voice over IP).

For example, if we need to develop and maintain the same application for each type of

interface, we would have to build 3 diferent applications: Analog version, Digital version, and IP

version. In addition, each of these applications depend directly on the board API. Furthermore, if

we want to deploy the application on CT Media (for example) the we would have to once again

rewrite the entire application from scratch.

Here is where CTADE_A provides a great advantage. With CTADE_A we have a group of

easy commands, that allow us to develop one application for any type of trunk and any kind

of API. This concept is called API transparency.

76

How can CTADE_A achieve API transparency?

 The schematic shows where TOPAZ is in the system and how it “isolates” the

application from the API.

As we see in the above diagram, TOPAZ is between the API’s and the application.

TOPAZ detecta the API and installed boards (using the Topaz Profile - we will see

later).

TOPAZ is RESOURCE oriented, it deals directly with the telephony resources in the system .

Well, this is what we call a system resource oriented . What is a resource ?

R4 API CT Media New API’s
(Future ...)

 Dialogic Boards

CCTT AADDEE AArrcchhiitteeccttuurree ((TTOOPPAAZZ))

77

A resource is something that refers to an element or a group of elements where each of one

represents an entity of elements to be shared and use. The first thing that we have to define is the type of

resources. In VOS we have the following resources:

• Trunk Resource: Line Interface resource.

• Media Resource: Play, Record, Tones generation/detection resources.

• FAX Resource: Resources to send and receive FAXES

• Voice recognition Resources: Speech recognition resources.

• Text-to-Speech Resources: Text to speach resources.

• Conferencing Resources: Conferencing to arrange and control resources.

As we can see in the follow VOS Sample code, the functions that refer to the resources

always start with the name of the resource:

MEDIA FUNCTIONS MediaPlayFile()

MediaGetDigitBuffer()

MediaRecordFile()

MediaWait()

....

TRUNK FUNCTIONS TrunkWaitCall()

TrunkAnswerCall()

TrunkMakeCall()

TrunkWait()

...

FAX FUNCTIONS FaxAbort()

FaxAddTextFile()

FaxWait()

...

78

7.1. Graphical VOS. CT ADE Architecture Unleashed.

Now, we know how to create a project and how to add the necessary files to the proyect. In

addition, we know how to configure a VOS project.

Next, we will try to understand CTADE_A and the VOS language. As we already know,

CTADE_A is a collection of software modules that implement a very light layer between the

CTADE_A commands (MediaPlayFile, MediaRecord, and so on…) and the installed CTI API.

CTADE_A is heavily resource oriented. As we saw in the introduction, there are several

types of resources (Trunk, Media, Fax, ASR, TTS, Conference) that use different technologies

from the Dialogic boards.

Each of these resources contain several internal states whose transitions belong to the

different resource live phases. For further information about these states, please refer to Graphical

VOS User’s Guide en la sección CTADE_A->Resource Stats.

79

7.1.1. CTADE_A. Resources and Resource Index Numbers.

Many VOS functions control CTADE_A Resources. For example, the MediaPlayFile

function plays a sound file on the current Media Resource. Now, we will introduce the Resource

concept and will discuss how Resource numbering works.

A Resource is a component of a call processing system. In most cases, a single

Resource processes a single stream of audio corresponding to the sound on a telephone line or

channel on a digital trunk.

Each Resource is identified by a Resource index number. Generally, you won't have to

worry about Resource index numbers, since VOS reserves and routes Resources as your

application needs them, but if you want to control how your applications use Resources, you'll

specify them by their index number. Index numbers start at 0 for each Resource type, and are

numbered independent of other Resource types: a VOS task could easily be using Trunk

Resource 1 and Media Resource 4.

In Addition, there are several functions to obtain information about the Indexes of our

resources:

- ResourceTypeGetIndex, Returns the index number of

the current resource, e.g. MediaGetIndex,

TrunkGetIndex

- ResourceTypeGetCount, Returns the total number of

resources, e.g. MediaGetCount, TrunkGetCount.

80

7.1.2. CTADE_A Functions overview.

In CTADE_A, all the functions come in groups of resources. Each type of CTADE_A

resources form groups of functions that refers to specific features. Normally, all resources in the

system have a number and we have a index to address each resource. There are 2 ways to ask for

a resource, automatic and manual. Example:

Automatic request of resources Manual request of resources

TrunkWaitCall();

TrunkAnswerCall();

if (TrunkGetState() strneq "Connected")
 voslog("Unexpected trunk state ",TrunkGetState());
 stop;
endif

MediaPlayFile("HelloInbound.vox");

TrunkDisconnect();
restart;

TrunkUse(0);

TrunkWaitCall()

TrunkAnswerCall();

if (TrunkGetState() strneq "Connected")
 voslog("Unexpected trunk state
",TrunkGetState());
 stop;
endif
MediaUse(0);

MediaPlayFile("HelloInbound.vox");

TrunkDisconnect();

MediaUnUse(0);

TrunkUnUse(0);

Restart;

Here we reserve automatically a
Trunk resource

When we call here the function Media,
if there is no current Media resource,
TOPAZ will assign a resource to us.

Here in an explicit way, we are asking for the
Trunk resource number 0. If another task has
this resource, we will get a error.

Here in the same way that with the Trunk, we ask
for the Media resource 0.

81

7.1.2.1. CTADE_A Functions. Asynchronous Mode.

By default, VOS always wait until all CTADE_A functions finish his execution

(synchronous way). Example:

MediaPlayFile("LeaveMsg.vox");

MediaRecordFile("Message");

By default, MediaPlayFile will return the execution when the vox files is finish or

another termination condition (DTMF, silence, etc…).

However, in many occasions could be attractive to call the function and continue the

execution of the program (asynchronous execution). Example:

 MediaPlayFile(“Welcome.vox”);

 Balance=CheckBalance(AccountNo);

 MediaPlayFile(Balance&”.vox”);

Imagine that the function CheckBalance take between 1 and 10 secs to execute

(depending on how busy the DB server is). In the worst case, the person that is calling into

the system will have to wait until 10 secs between the first play and the result of the

balance.

82

Using the asynchronous execution method we can avoid this problem using the

function MediaEnableAsync() as follow:

 MediaEnableAsync();

MediaPlayFile(“Welcome.vox”);

 Balance=CheckBalance(AccountNo);

 MediaWait();

MediaPlayFile(Balance&”.vox”);

 ….

7.1.2.2. CTADE_A Functions. Trunk Resource & Functions

The Trunk functions are used to manage our Trunk resources in the system in order to

do things as follow:

• Make outgoing calls.

• Make Call Progress Analisys

• Answer or reject incomming calls.

• Obtain call information (ANI, DNIS, Caller Name, etc...)

• Hang up the call

As you can see, the Trunk resources are responsible for all Call Control. A Trunk

Resource processes a single stream of audio, so each of the following is considered a single

Trunk Resource:

• The trunk interface for a single analog line.

• One E1/T1 time-slot

• An MSI Station

• SimPhone’s simulated trunk line (always Index number 0).

This function waits until
the state of the Media
Resource comes to Idle

83

The functions to control the Trunk Resources:

TrunkAbort TrunkAbort([ResIndex]) Terminates any function in
progress on a Trunk
Resource.

TrunkAnswerCall TrunkAnswerCall()

Answers an incoming call
on the current Trunk
Resource.

TrunkBlock TrunkBlock()

Prevents calls from coming
in on the current Trunk
Resource.

TrunkClearAllDeferOnHangup TrunkClearAllDeferOnHangup()

Calls onhangup if one or
more deferred hang-ups did
occur.

TrunkClearDeferOnHangup TrunkClearDeferOnHangup()

Calls onhangup if deferred
hang-up did occur.

TrunkDeferOnHangup TrunkDeferOnHangup()

Prevents VOS from jumping
to onhangup when a caller
hang-up is detected.

TrunkDisableAsync TrunkDisableAsync()

Disables asynchronous
mode.

TrunkDisableCallAnalysis TrunkDisableCallAnalysis()

Disables call progress
analysis on the current
Trunk Resource.

TrunkDisableIncomingCalls TrunkDisableIncomingCal
ls()

Prevents incoming calls
from arriving on the current
Trunk Resource.

TrunkDisconnect TrunkDisconnect()

Disconnects a call on the
current Trunk Resource.

84

TrunkEnableAsync TrunkEnableAsync([ResIndex])

Enables asynchronous
mode.

TrunkEnableCallAnalysis TrunkEnableCallAnalysis()

Enables call progress
analysis on the current
Trunk Resource.

TrunkEnableIncomingCalls TrunkEnableIncomingCall
s()

Allows incoming calls on
the current Trunk
Resource.

TrunkGetANI ANI = TrunkGetANI()

Returns ANI digits for an
incoming call on the current
Trunk Resource.

TrunkGetBin BinValue = TrunkGetBin(ParmID,
BufNr, BytesToRead)

Returns the binary value of
the specified CTADE_A
Trunk parameter.

TrunkGetBool BoolValue =
TrunkGetBool(ParmID)

Returns the Boolean value
of the specified Topaz
Trunk parameter.

TrunkGetCallerName Name = TrunkGetCallerName()

Returns the caller name for
an incoming call on the
current Trunk Resource.

TrunkGetCount Count =
TrunkGetCount([TopazTasks])

Returns the number of
Trunk Resources in Topaz,
assigned to the current task,
or assigned to another task.

TrunkGetDNIS DNIS = TrunkGetDNIS()

Returns DNIS digits for an
incoming call on the current
Trunk Resource.

TrunkGetIndex ResIndex = TrunkGetIndex()

Returns the Resource index
number for the current
Trunk Resource.

TrunkGetInt IntValue = TrunkGetInt(ParmID [,
Arg1, Arg2, ... ArgN])

Returns the integer value of
the specified Topaz Trunk
parameter.

85

TrunkGetOwnerTask TaskID =
TrunkGetOwnerTask(ResIndex)

Returns the task ID of the
task in which the specified
Trunk Resource is open.

TrunkGetState State = TrunkGetState([Type])

Returns the current state of
the current Trunk Resource.

TrunkGetString StrValue =
TrunkGetString(ParmID)

Returns the string value of
the specified Topaz Trunk
parameter.

TrunkGetTech TechType = TrunkGetTech([Type])

Returns information on the
technology used by the
current Trunk Resource.

TrunkGetTechIndex TechIndex = TrunkGetTechIndex()

Returns the Technology Index
for the current Trunk Resource.

TrunkIsANIAvailable ANIStatus =
TrunkIsANIAvailable()

Returns a description of the
ANI digits available for an
incoming call on the current
Trunk Resource.

TrunkIsANISupported Support = TrunkIsANISupported()

Checks ANI support for the
current Trunk Resource.

TrunkIsCallerNameAvailable Available =
TrunkIsCallerNameAvailable()

Checks whether a caller
name is available for an
incoming call on the current
Trunk Resource.

TrunkIsCallerNameSupported Support =
TrunkIsCallerNameSupported()

Checks whether caller
names are supported by the
current Trunk Resource.

TrunkIsDNISAvailable Available =
TrunkIsDNISAvailable()

Determines if DNIS is
available for an incoming
call on the current Trunk
Resource.

TrunkIsDNISSupported Support =
TrunkIsDNISSupported()

Checks DNIS support for
the current Trunk Resource.

86

TrunkListenTo TrunkListenTo(ResType,
ResIndex)

Routes the current Trunk
Resource to another
Resource.

TrunkMakeCall TrunkMakeCall(PhoneNumber)

Places an outbound call on
the current Trunk Resource.

TrunkRejectCall TrunkRejectCall()

Rejects an incoming call on
the current Trunk Resource.

TrunkReset TrunkReset([ResIndex])

Resets a Trunk Resource.

TrunkS100HandOff TrunkS100HandOff(ASI [,
WaitForReturn, CatchTag])

CT Media only: hands the
call to a specified
application.

TrunkS100Retrieve TrunkS100Retrieve([Cause]) CT Media only: retrieves a
call group that was
previously handed off.

TrunkS100Return TrunkS100Return([CatchTag])

CT Media only: returns a
call group to a previous
owner.

TrunkS100WaitForReturn TrunkS100WaitForReturn()

CT Media only: waits
indefinitely for a handed-off
call group to return.

TrunkSetBin TrunkSetBin(ParmID, BufNr,
BytesToWrite)

Sets the specified Topaz
Trunk parameter to a binary
value.

TrunkSetBool TrunkSetBool(ParmID, Value)

Sets the specified Topaz
Trunk parameter to a
Boolean value.

TrunkSetInt TrunkSetInt(ParmID, [Arg1, Arg2,
... ArgN,] Value)

Sets the specified Topaz
Trunk parameter to an
integer value.

TrunkSetString TrunkSetString(ParmID, Value)

Sets the specified Trunk
parameter to a string value.

87

TrunkUnblock TrunkUnblock()

Allows incoming calls on
the current Trunk Resource.

TrunkUnlisten TrunkUnlisten()

Disconnects a listen
connection

TrunkUnUse TrunkUnUse()

Frees the current Trunk
Resource for so that it can
be used by other tasks.

TrunkUse TrunkUse([ResIndex])

Reserves a Trunk Resource
for the task.

TrunkUseNext TrunkUseNext()

Reserves the next available
Trunk Resource for the task.

TrunkUseNoWait TrunkUseNoWait([ResIndex])

Reserves a Trunk Resource
for the task and returns
immediately if it is not
available.

TrunkWait TrunkWait([ResIndex])

In asynchronous mode,
waits for a function to
complete.

TrunkWaitCall TrunkWaitCall()

Waits for an incoming call
on the current Trunk
Resource.

TrunkWaitDisconnect TrunkWaitDisconnect([Timeout])

Waits for the caller to hang
up or otherwise be
disconnected from the
current Trunk Resource.

88

7.1.2.3. CTADE_A Functions. Media Resources & Functions

Media Resources control playing and recording of sound files and tones and getting

DTMF digits from callers. The Media Resources normally are used to:

• Playing Sound Files and Playing an Indexed Prompt describe playing audio files to a
caller Reproducir frases numerícas (funciones spk_)

• Speaking Phrases introduces you to phrases that contain variable information: "Your
balance is three hundred dollars and seventeen cents."

• Recording Sound Files shows you how to record audio from a caller to an audio file.

• Using Stop Tones describes setting touch tone digits that, when dialed by the caller,
will interrupt playing or recording.

• Getting Digits describes retrieving touch-tones from a caller.

• Playing Tones shows how to play general tones to a caller.

The functions to control Media Resources are:

MediaAbort MediaAbort([ResIndex])

Terminates any function in progress on a
Media Resource.

MediaClearDigitBuffer

MediaClearDigitBuffer()

Discards any digits in the current Media
Resource's channel buffer.

MediaDisableAsync MediaDisableAsync([ResIndex])

Disables asynchronous mode.

MediaEnableAsync MediaEnableAsync([ResIndex])

Enables asynchronous mode.

MediaGetBool BoolValue = MediaGetBool(ParmID)

Returns the Boolean value of the specified
Topaz media parameter.

MediaGetCount Count = MediaGetCount([TopazTasks])

Returns the number of Media Resources in
Topaz, assigned to the current task, or
assigned to another task.

89

MediaGetDigitBuffer Digits = MediaGetDigitBuffer()

Returns the current contents of the digit
buffer.

MediaGetDigitCount DigitCount = MediaGetDigitCount()

Returns the number of digits pending in the
digit buffer.

MediaGetIndex ResIndex = MediaGetIndex()

Returns the ResourceIndex number for the
current Media Resource.

MediaGetInt IntValue = MediaGetInt(ParmID[, Arg1,
Arg2, ... ArgN])

Returns the integer value of the specified
Topaz media parameter.

MediaGetLanguage LanguageName = MediaGetLanguage()

Returns the name of the current language.

MediaGetOwnerTask TaskID =
MediaGetOwnerTask(ResIndex)

Returns the task ID of the task in which the
specified Media Resource is open.

MediaGetPlayRecordDu
ration

Duration =
MediaGetPlayRecordDuration()

Returns the length of the last MediaPlayFile
or MediaRecordFile.

MediaGetState State = MediaGetState([Type])

Returns the current state of the current Media
Resource.

MediaGetString StrValue = MediaGetString(ParmID)

Returns the string value of the specified
Topaz media parameter.

MediaGetTech TechType = MediaGetTech([Type])

Returns information on the technology used
by the current Media Resource.

MediaGetTechIndex TechIndex = MediaGetTechIndex()

Returns the technology index for the current
Media Resource.

MediaListenTo MediaListenTo(ResType, ResIndex)

Routes the current Media Resource to another
Resource.

MediaPlayDate MediaPlayDate(Value [, Gender])

Plays a date on the current Media Resource.

MediaPlayDualCadence MediaPlayDualCadenceTone(Freq1, Plays a dual cadence tone on the current

90

Tone Amp1, Freq2, Amp2, OnTime, OffTime,
Count)

Media Resource.

MediaPlayDualContinuo
usTone

MediaPlayDualContinuousTone(Freq1,
Amp1, Freq2, Amp2, Duration)

Plays a continuous single or dual tone on the
current Media Resource.

MediaPlayDigits MediaPlayDigits(Digits)

Generates the specified DTMF digits on the
current Media Resource.

MediaPlayFile MediaPlayFile(Filename,
[StartPosTenths, Duration, FileSpec])

Plays a sound file on the current Media
Resource.

MediaPlayInteger MediaPlayInteger(Value [, Gender]) Plays an integer on the current Media
Resource.

MediaPlayList MediaPlayList([StartPosTenths,
Duration])

In List mode, plays the queued files.

MediaPlayListClear MediaPlayListClear()

Clears the list of queued files.

MediaPlayListModeOff

MediaPlayListModeOff()

Disables List mode.

MediaPlayListModeOn

MediaPlayListModeOn()

Enables List mode.

MediaPlayMoney MediaPlayMoney(Value [, Gender]) Plays a money value on the current Media
Resource.

MediaPlayOrdinal MediaPlayOrdinal(Value [, Gender])

Plays an ordinal value on the current Media
Resource.

MediaPlayPrompt MediaPlayPrompt(IPFName,
PromptIndex)

Plays a prompt from an Indexed Prompt File
on the current Media Resource.

MediaPlaySingleCadenc
eTone

MediaPlaySingleCadenceTone(Freq1,
Amp1, OnTime, OffTime, Count)

Plays a single cadence tone on the current
Media Resource.

MediaPlaySingleContinu
ousTone

MediaPlaySingleContinuousTone(Freq1,
Amp1, Duration)

Plays a continuous single or dual tone on the
current Media Resource.

91

MediaPlayString MediaPlayString(Value [, Gender])

Plays a string on the current Media Resource.

MediaPlayTime MediaPlayTime(Value [, Gender])

Plays a time on the current Media Resource.

MediaPlayTone MediaPlayTone(ToneID)

Plays a tone on the current Media Resource.

MediaPlayUserDefined

MediaPlayUserDefined(Type, Value [,
Gender])

Speaks a phrase element of a user-defined
type.

MediaRecordFile MediaRecordFile(FileName,
[MaxSeconds, MaxSilence, Append,
FileSpec])

Records sound from the current Media
Resource to a sound file.

MediaReset MediaReset([ResIndex])

Resets a Media Resource.

MediaSetBool MediaSetBool(ParmID, Value)

Sets the specified Topaz media parameter to a
Boolean value.

MediaSetInt MediaSetInt(ParmID, [Arg1, Arg2, ...
ArgN,] Value)

Sets the specified Topaz media parameter to
an integer value.

MediaSetLanguage MediaSetLanguage(Language)

Sets the language to be used when speaking
phrases.

MediaSetString MediaSetString(ParmID, Value)

Sets the specified media parameter to a string
value.

MediaUnlisten MediaUnlisten()

Disconnects a listen connection.

MediaUnUse MediaUnUse()

Frees the current Media Resource so that it
can be used by other tasks.

MediaUse MediaUse([ResIndex])

Reserves a Media Resource for the task.

MediaUseNext MediaUseNext()

Reserves the next available Media Resource
for the task.

92

MediaUseNoWait MediaUseNoWait([ResIndex])

Reserves a Media Resource for the task and
returns immediately if it is not available.

MediaWait MediaWait([ResIndex])

In asynchronous mode, waits for a function to
complete.

MediaWaitDigits MediaWaitDigits(DigitCount
[, MaxSeconds, InterDigitDelay,
StopDigits])

Waits for digits to be entered on the current
Media Resource.

7.1.2.4. CTADE_A Functions. Fax Resource & Functions

Fax Resources control the transmission and processing of fax data. A single fax

channel on a Dialogic VFX board or on a GammaLink CP board is considered one Fax

Resource.

It's important to remember that Fax Resources can only send and receive fax data.

All other functions required to answer and make telephone calls are performed by Trunk

and Media Resources.

Fax Resources are managed with the Fax functions

• Send faxes

• Receive faxes

• Polled Transmission or Turnarround transminision

93

FaxAbort FaxAbort([ResIndex]) Terminates any function in progress on a
Fax Resource.

FaxAddRawFile FaxAddRawFile(Filename [, Break [, Offset [,
Length]]])

Opens a raw format file in preparation for
sending it with FaxSend.

FaxAddTextFile FaxAddTextFile(Filename [, Break [, Offset [,
Length]]])

Opens a text file in preparation for sending
it with FaxSend.

FaxAddTiffFile FaxAddTiffFile(Filename [, Break [, Offset [,
Length]]])

Opens a TIFF file in preparation for
sending it with FaxSend.

FaxClearFiles FaxClearFiles()

Closes any open fax files.

FaxDisableAsync FaxDisableAsync([ResIndex])

Disables asynchronous mode for a Fax
Resource.

FaxEnableAsync FaxEnableAsync([ResIndex])

Enables asynchronous mode for a Fax
Resource.

FaxGetBool BoolValue = FaxGetBool(ParmID)

Returns the Boolean value of the specified
Topaz fax parameter.

FaxGetCount Count = FaxGetCount([TopazTasks])

Returns the number of Fax Resources in
Topaz, assigned to the current task, or
assigned to another task.

FaxGetIndex ResIndex = FaxGetIndex()

Returns the ResIndex number for the
current Fax Resource.

FaxGetInt IntValue = FaxGetInt(ParmID[, Arg1, Arg2, ... Returns the integer value of the specified

94

ArgN])

Topaz fax parameter.

FaxGetOwnerTask TaskID = FaxGetOwnerTask(ResIndex)

Returns the task ID of the task in which the
specified Fax Resource is open.

FaxGetPageCount Count = FaxGetPageCount()

Returns the number of pages transferred on
the current Fax Resource.

FaxGetRemoteID

RemoteId = FaxGetRemoteID()

Returns the remote ID string received from
the remote fax Resource.

FaxGetState State = FaxGetState([Type])

Returns the current state of the current Fax
Resource.

FaxGetString StrValue = FaxGetString(ParmID)

Returns the string value of the specified
Topaz fax parameter.

FaxGetTech TechType = FaxGetTech([Type])

Returns information on the technology used
by the current Fax Resource.

FaxGetTechIndex TechIndex = FaxGetTechIndex()

Returns the technology index for the current
Fax Resource.

FaxIsPollingRequested

Support = FaxIsPollingRequested() Determines if polling has been requested.

FaxIsPollingSupported

Support = FaxIsPollingSupported()

Determines if polling is supported on the
current Fax Resource.

FaxListenTo FaxListenTo(ResType, ResIndex)

Routes the current Fax Resource to another
Resource.

FaxReceive FaxReceive(Filename [, Poll [, Initiate])

Receives a fax on the current Fax Resource.

FaxReset FaxReset([ResIndex])

Resets a Fax Resource.

FaxSend FaxSend([Poll, HiRes])

Sends a fax on the current Fax Resource.

95

FaxSetBool FaxSetBool(ParmID, Value)

Sets the specified Topaz fax parameter to a
Boolean value.

FaxSetHeaderText

FaxSetHeaderText(Text)

Sets the header text for faxes that will be
sent.

FaxSetInt FaxSetInt(ParmID, [Arg1, Arg2, ... ArgN,]
Value)

Sets the specified Topaz fax parameter to an
integer value.

FaxSetLocalID

FaxSetLocalID(LocalId)

Sets the local ID for the current Fax
Resource.

FaxSetString FaxSetString(ParmID, Value)

Sets the specified fax parameter to a string
value.

FaxUnlisten FaxUnlisten()

Disconnects a listen connection

FaxUnUse FaxUnUse([ResIndex])

Frees the current Fax Resource so that it
can be used by other tasks.

FaxUse FaxUse(ResIndex)

Reserves a Fax Resource for the task.

FaxUseNext FaxUseNext()

Reserves the next available Fax Resource
for the task.

FaxUseNoWait FaxUseNoWait([ResIndex])

Reserves a Fax Resource for the task and
returns immediately if it is not available.

FaxWait FaxWait([ResIndex])

In asynchronous mode, waits for a function
to complete.

96

7.1.2.5. CTADE_A Functions. Conference Functions

Conference Resources let you create and manage conferences.

The following topics describe the conferencing functions:

• Creating Conferences

• Removing Parties from a Conference

• Destroying Conferences

The multiconferencing functions are:

ConfAddParty ConfAddParty([MaxTalkListen, MaxListenOnly,
CurrentRes, Attributes])

Adds a Resource to a Conference.

ConfCreate ConfCreate(MaxTalk, MaxListen)

Reserves a Conference Resource.

ConfDestroy ConfDestroy() Removes all parties and frees all
Conference Resources.

ConfDisableAsync ConfDisableAsync([ResIndex])

Disables asynchronous mode for a
Conference Resource.

ConfEnableAsync ConfEnableAsync([ResIndex])

Enables asynchronous mode for a
Conference Resource.

ConfGetBool BoolValue = ConfGetBool(ParmID) Returns the Boolean value of the
specified Topaz Conference parameter.

ConfGetCount Count = ConfGetCount([TopazTasks])

Returns the number of Conference
Resources in Topaz, assigned to the
current task, or assigned to another task.

97

ConfGetIndex ResIndex = ConfGetIndex()

Returns the Resource index number for
the current Conference Resource.

ConfGetInt IntValue = ConfGetInt(ParmID [, Arg1, Arg2, ... ArgN])

Returns the integer value of the specified
Topaz Conference parameter.

ConfGetOwnerTask TaskID = ConfGetOwnerTask(ResIndex)

Returns the task ID of the task in which
the specified Conference Resource is
open.

ConfGetPartyCount PartyCount = ConfGetPartyCount()

Returns the number of parties in the
current Conference.

ConfGetPartyResIndex ResIndex = ConfGetPartyResIndex(PartyIndex)

Returns the Resource Index for a party in
the current Conference.

ConfGetPartyResType ResType = ConfGetPartyResType(PartyIndex)

Returns the Resource Type for a party in
the current Conference.

ConfGetState State = ConfGetState([Type])

Returns the current state of the current
Conference Resource.

ConfGetString StrValue = ConfGetString(ParmID)

Returns the string value of the specified
Topaz Conference parameter.

ConfGetTech TechType = ConfGetTech([Type])

Returns information on the technology
used by the current Conference Resource.

ConfGetTechIndex TechIndex = ConfGetTechIndex()

Returns the technology index for the
current Conference Resource.

ConfRemoveAllParties ConfRemoveAllParties()

Removes all parties from the Conference
Resources, but keeps conference
resources reserved.

ConfRemoveParty ConfRemoveParty([CurrentResType])

Removes a party from the current
Conference Resource.

ConfReset ConfReset()

Destroys the conference and frees the
Conference Resources.

98

ConfSetBool ConfSetBool(ParmID, Value)

Sets the specified Topaz Conference
parameter to a Boolean value.

ConfSetInt ConfSetInt(ParmID, [Arg1, Arg2, ... ArgN,] Value)

Sets the specified Topaz Conference
parameter to an integer value.

ConfSetString ConfSetString(ParmID, Value)

Sets the specified Conference parameter
to a string value.

ConfUnUse ConfUnUse()

Frees the current Conference Resource
for use by other tasks.

ConfUse ConfUse([ResIndex])

Reserves a Conference Resource for the
task.

ConfUseNext ConfUseNext()

Reserves the next available Conference
Resource for the task.

ConfUseNoWait ConfUseNoWait([ResIndex])

Reserves a Conference Resource for the
task and returns immediately if it is not
available.

ConfWait ConfWait([ResIndex])

In asynchronous mode, waits for a
function to complete.

99

7.1.2.6. CTADE_A Functions. Voice recognigtion functions

Voice Recognition (VR) Resources translate a caller's spoken input into text

strings. One VR Resource can perform a recognition on a single stream of audio data (from

one Trunk or Conference Resource).

You can find the number of VR Resources on your system with the VrGetCount

function.

Note: CTADE_A creates one Voice Recognition Resource for each Media Resource on

your system. Depending on your speech engine's limits, you may not be able to use all of

these VR Resources simultaneously

VrAbort VrAbort([ResIndex]) Terminates any function in progress on
a Voice Recognition Resource.

VrDisableAsync VrDisableAsync() Disables asynchronous mode.

VrDisableWordSpotting VrDisableWordSpotting() Disables word spotting.

VrEnableAsync VrEnableAsync() Enables asynchronous mode.

VrEnableWordSpotting VrEnableWordSpotting(Vocab) Enables word spotting.

VrEndSession VrEndSession() Ends a voice recognition session on the
current Resource.

VrExecuteForm VrExecuteForm(Form) Executes a speech recognition form.

100

VrGetBin BinValue = VrGetBin(ParmID, BufNr,

BytesToRead)
Returns the binary value of the
specified Topaz Voice Recognition
parameter.

VrGetBool BoolValue = VrGetBool(ParmID) Returns the Boolean value of the
specified Topaz Voice Recognition
parameter.

VrGetCount Count = VrGetCount([TopazTasks]) Returns the number of Voice

Recognition Resources in Topaz,
assigned to the current task, or assigned
to another task.

VrGetFieldValue VrGetFieldValue

VrGetHypoCount HypoCount = VrGetHypoCount() Returns the number of hypotheses for
the last recognition.

VrGetHypoScore Score = VrGetHypoScore(HypoIndex) Returns the score for a hypothesis.

VrGetHypoStr Text = VrGetHypoStr(HypoIndex) Returns the string for a hypothesis.

VrGetIndex Res Index = VrGetIndex() Returns the Resource Index number for
the current Voice Recognition
Resource.

VrGetInt IntValue = VrGetIntParmID [,
Arg1, Arg2, ... ArgN])

Returns the integer value of the
specified Topaz Voice Recognition
parameter.

VrGetOwnerTask TaskID = VrGetOwnerTask(ResIndex) Returns the task ID of the task in which
the specified Voice Recognition
Resource is open.

VrGetState State = VrGetState([Type]) Returns the current state of the current
Voice Recognition Resource.

VrGetString StrValue = VrGetString(ParmID) Returns the string value of the specified
Topaz Voice Recognition parameter.

VrGetTech TechType = VrGetTech([Type]) Returns information on the technology
used by the current Voice Recognition
Resource.

101

VrGetTechIndex TechIndex = VrGetTechIndex()

Returns the Technology Index for the
current Voice Recognition Resource.

VrGetWordCount WordCount = VrGetWordCount(HypoIndex) Returns the number of words in a
hypothesis.

VrGetWordId WordId = VrGetWordId(HypoIndex,
WordIndex)

Returns the identification number for a
word in a hypothesis.

VrGetWordScore Score = VrGetWordScore(HypoIndex,
WordIndex)

Returns the score for a word in a
hypothesis.

VrGetWordStr Text = VrGetWordStr(HypoIndex,
WordIndex)

Returns the text for a word in a
hypothesis.

VrIsWordScoreSupported Support = VrIsWordScoreSupported() Checks whether word scores are
supported by the current Voice
Recognition Resource.

VrListenTo VrListenTo(ResType, ResIndex) Routes the current Voice Recognition
Resource to another Resource.

VrPlayAndRecogAlpha VrPlayAndRecogAlpha(FileName) Plays a sound file and then recognizes
the caller's reply, a spoken letter of the
alphabet.

VrPlayAndRecogAlphaNum VrPlayAndRecogAlphaNum(FileName [,
MinLength] [, MaxLength])

Plays a sound file and then recognizes
the caller's reply, a combination of
letters and numbers.

VrPlayAndRecogDate VrPlayAndRecogDate(FileName) Plays a sound file and then recognizes
the caller's reply, a date.

VrPlayAndRecogDigit VrPlayAndRecogDigit(FileName) Plays a sound file and then recognizes
the caller's reply, a single digit.

VrPlayAndRecogDigits VrPlayAndRecogDigits(FileName,
MinDigits, MaxDigits)

Plays a sound file and then recognizes
the caller's reply, one or more digits.

VrPlayAndRecogGrammar VrPlayAndRecogGrammar(FileName,
GrammarFile)

Plays a sound file and then recognizes
the caller's reply using the specified
grammar.

VrPlayAndRecogInt VrPlayAndRecogInt(FileName) Plays a sound file and then recognizes
the caller's reply, an integer.

102

VrPlayAndRecogMoney VrPlayAndRecogMoney(FileName) Plays a sound file and then recognizes

the caller's reply, a money value.

VrPlayAndRecogPhoneNumber VrPlayAndRecogPhoneNumber(FileName) Plays a sound file and then recognizes
the caller's reply, a phone number.

VrPlayAndRecogTime VrPlayAndRecogTime(FileName) Plays a sound file and then recognizes
the caller's reply, a time.

VrPlayAndRecogUser VrPlayAndRecogUser(FileName,
RecogType)

Plays a sound file and then recognizes
the caller's reply using a user-defined
recognition type.

VrPlayAndRecogYesNo VrPlayAndRecogYesNo(FileName) Plays a sound file and then recognizes
the caller's reply, either "yes" or "no."

VrReset VrReset(ResIndex) Resets a Voice Recognition Resource.

VrSetBin VrSetBin(ParmID, BufNr, BytesToWrite) Sets the specified Topaz Voice
Recognition parameter to a binary
value.

VrSetBool VrSetBool(ParmID, Value) Sets the specified Topaz Voice
Recognition parameter to a Boolean
value.

VrSetInt VrSetInt(ParmID, [Arg1, Arg2,
... ArgN,] Value)

Sets the specified Topaz Voice
Recognition parameter to an integer
value.

VrSetString VrSetString(ParmID, Value) Sets the specified Voice Recognition
parameter to a string value.

VrStartSession VrStartSession() Starts a voice recognition session.

VrUnlisten VrUnlisten() Disconnects a listen connection.

VrUnUse VrUnUse() Frees the current Voice Recognition
Resource for so that it can be used by
other tasks.

103

VrUse VrUse([ResIndex]) Reserves a Voice Recognition Resource
for the task.

VrUseNext VrUseNext() Reserves the next available Voice
Recognition Resource for the task.

VrUseNoWait VrUseNoWait([ResIndex]) Reserves a Voice Recognition Resource
for the task and returns immediately if
it is not available.

VrWait VrWait([ResIndex]) In asynchronous mode, waits for a
function to complete.

7.1.3. CTADE_A. Routing

Many telephony operations require two Resources working together. For example,

playing a speech file to a caller requires a Media Resource to play the file and a Trunk Resource

to handle the connection to the caller. The Trunk Resource has to listen to the Media Resource's

output so the caller can hear the file, and the Media Resource should listen to the Trunk

Resource in order to process any digits the caller enters.

In most cases, you won't have to explicitly control routing: by default, CTADE_A

routes together the Resources you'll need to use the functions you use. For example, when you

play a file, CTADE_A makes sure the current Media Resource is routed to the current Trunk

Resource.

You can, however, override Topaz's automatic routing.

 Some examples:

104

• The MediaUse function reserves a Media Resource and routes it to the current

Trunk Resource, if there is one.

• By default, the FaxUse function reserves a Fax Resource that is compatible

with the current Trunk Resource and routes the two together.

• If you use MediaPlayFile and you haven't already opened a Media Resource,

Topaz reserves a Media Resource and routes it to the current Trunk Resource

before playing the file. If there aren't any Trunk Resources reserved, Topaz

reserves one before reserving the Media Resource.

• When you add any Resource to a Conference, Topaz routes both Resources

toger.

However, it is possible to deactivate the automatic routing

TopazDisableAutoRoute();

It is possible to activate again the automatic routing calling the function:

TopazEnableAutoRoute();

105

7.1.4. CTADE_A. Routing types: Full Duplex y Half Duplex.

When a full-duplex connection is made, there is a bi-directional routing between two

Resources, as shown in the following diagram. Each Resource listens to the other Resource's

transmission, as in the typical routing of a Media and Trunk Device to each other:

 However, in a half-duplex only one resource is listening to the other resource.

A full-duplex connection TopazRoute(Res1, Index1, Res2, Index2)

makes the two routings shown by large dots in the first diagram. Resource 2 listens to Resource

1, and vice versa.

106

A full-duplex routing is equivalent to two listen commands.

A half-duplex connection makes the routing shown by a large dot in the above diagram.

Resource 2 listens to Resource 1, but not vice versa (unless a previous routing command was

made to do this).

7.1.5. CTADE_A. Call Control, Hang-up Processing and Onhangup

There are 2 important questions in the hangup process:

• Detect when a caller has hangup the call

• Reacting to the hang-up when it happens.

7.1.5.1. Detecting hang up

Hang-up detection is one area in which you can take advantage of Topaz’s API

transparency. When you write your application using the Trunk functions, you don’t need to

worry about the technical details of how CTADE_A will detect a hang-up.

When you deploy your application, you can use the same VOS code regardless of

the system by changing configuration details in the Topaz Profile.

107

7.1.5.2. Reacting to Hang-ups

When a caller hang-up is detected, VOS stops execution at the end of the current p-

code instruction (which may be in the middle of an expression or statement) and transfers

control to the onhangup function. The onhangup function then executes until a restart, return

or endonhangup statement is encountered. If endonhangup is encountered, the effect is

equivalent to return. If a return is executed from within onhangup, execution returns to the

statement that was originally interrupted. If a second hang-up event is reported while within

onhangup, it is ignored.

For most applications, Parity Software recommends using restart to return control

back to the beginning of the program. This usually results in the cleanest architecture.

If an ansynchronous CTADE_A function, such as MediaPlayFile, MediaRecordFile

or MediaWaitDigits, is in progress when a hang-up is reported, VOS will interrupt the

function and jump to onhangup immediately.

If any other blocking function is in progress when a hang-up event is reported, for

example sem_set or ser_rdbuf, then VOS will wait until the function completes before

jumping to onhangup.

The TrunkDeferOnHangup and TrunkClearDeferOnHangup functions allow

an application to define critical areas of code that must not be interrupted by a jump to

onhangup. A typical example might be a set of database updates which, once started, must

all be completed. Any telephony blocking functions that follow TrunkDeferOnHangup will

108

be aborted when a hang-up event is reported, but the transfer of control to the onhangup

function will be deferred until the code reaches a TrunkClearDeferOnHangup function.

Sample:

dec

 var res:5;

enddec

program

 res = arg(1);

 TrunkUse(res);

 TrunkWaitCall();

…

…

 TrunkDisconnect();

 restart;

endprogram

onhangup

 TrunkDisconnect(),

 restart;

endonhangup

109

7.1.6. CTADE_Architecture. Technologies

CTADE_Architecture(Topaz) was designed for API transparency--the same set of

functions work under all supported telephony APIs and all supported trunk types--but some

features are available only for certain technologies. For example, GlobalCall systems transmit

billing rate information, but other trunk interface APIs (LSI, MSI, etc.) don't use protocol-

defined billing rates. Consequently, a VOS “TrunkGetBilling” function, which couldn't be ported

from the R4GcTrunk technology to other technologies, would not be API transparent.

VOS provides functions that let you control technology-specific aspects of your

telephony Resources. The Get/Set functions, like TrunkGetInt, let you access technology-

specific parameters and API-specific functions.

The Get/Set functions let you read and set CTADE_A parameters that apply only to

particular technologies.

The Get functions, like MediaGetInt, return values for technology-level Boolean, string,

and integer parameters. For example, to get the current play volume on an R4DxMedia

Resource, you would use the MediaGetInt function with the REGID_PlaySpeed RegID (702):

Value = MediaGetInt(702);

110

The Set functions, like MediaSetInt, let you set technology-specific parameters. For

example, to set the current play volume on an R4DxMedia Resource to 7, you would use the

Media SetInt function with REGID_PlaySpeed (702):

MediaSetInt(702, 7);

Note

It's important to note that setting a CTADE_A parameter calls an API-level function

that might do more than simply change a board-level parameter. For example, in R4DxMedia,

you clear Dialogic tone IDs by setting REGID_R4DxMediaDisableAllToneDetection (280) to

either 0 or 1 with the Media SetBool function (MediaSetBool):

MediaSetBool(280, 0);

Here the Media SetBool function doesn't set a board-level parameter to 0; this function

calls Dialogic's dx_deltones function, which removes all user-defined tones previously added to

the channel.

For details on the functions or methods available in VOS and more examples, see

Get/Set Functions.

You'll find a list of available RegIDs in CTADE_A RegIDs.

The current CTADE_A technologies are:

Trunk Technologies
Technology ID Number Description
SimTrunk 1001 SimPhone Trunk

111

R4AgTrunk 1002 R4 ag_ / dx_ API (aka LSI)
R4GcTrunk 1003 R4 gc_ API
S100Trunk 1005 S.100 CTscr_ API
R4MsTrunk 1006 R4 ms_ station API

Media Technologies
Technology ID Number Description
SimMedia 2001 SimPhone Media
R4DxMedia 2002 R4 dx_ API (aka VOX)
S100Media 2003 S.100 CTplyr_/CTrcdr_ API
WaveMedia 2004 Win32 Wave API

Fax Technologies
Technology ID Number Description
R4FxFax 3001 R4 fx_ API
R4GrtFax 3002 GammaLink fax
S100Fax 3003 S.100 Fax

Conference Technologies
Technology ID Number Description
R4MsConf 5001 R4 ms_ conference API
R4DcbConf 5002 R4 dcb_ API
S100Conf 5003 S.100 CTconf_ API

For instance, let’s see some 3of the RegIds under the R4DxMedia technology:

R4DxMedia RegIDs
Type Name Value(RegID) Description

SetInt ScBusListenSlot 1000 Sets the SC bus timeslot to listen to for this
Resource (SC Bus Listen Bus Types only).

GetInt ScBusTransmitSlot 1001 Returns the SC bus transmit timeslot for this
Resource (SC Bus Listen Bus Types only).

SetBool EnableDevice 1202 Set to false to close all device handles so a
HotSwap can be done. Set to true to reopen
all device handles after a HotSwap has been
completed.

GetInt R4DxMediaCPAConnectionType 200 Use this REGID to directly access the
ATDX_CONNTYPE API function.

GetInt R4DxMediaCPAAnswerSize 201 Use this REGID to directly access the
ATDX_ANSRSIZ API function.

GetInt R4DxMediaCPAError 202 Use this REGID to directly access the
ATDX_CPboolOR API function.

GetInt R4DxMediaCPATerm 203 Use this REGID to directly access the
ATDX_CPTERM API function.

3 There are more RegIds for this tech. Please refer to the Graphical VOS VOS User’s guide.

112

… … .. .

… …...

7.1.7. CTADE_A Profile Ids

Profile Ids

Some RegIDs describe system details and are stored in the Topaz Profile--these

RegIDs are called Profile IDs. The contents of the Profile can be viewed with the

TopazProfile.exe -L command, which generates an include file. Each entry in the

generated file represents a Profile ID.

You can get the current value of a Profile ID with the appropriate Get function.

For example, to find out if ANI (Caller ID) support is enabled, you would use the Trunk

GetBool function with REGID_ANISupported (301):

Support = TrunkGetBool(301);

The Topaz Profile is a database that is quite similar to the Windows registry--

it's a tree of directories and files that stores the following information:

• Details of all installed hardware Resources, as determined by the Resource
Scanner.

• User-supplied hardware configuration information that cannot be
determined by the Resource Scanner.

• User-configurable options, such as the default language for speaking
values (English, Spanish...).

113

Running VOS applications treat the Profile as read-only. The Profile should be

fully initialized before these applications are started.

No dynamically changing information, such as the current state of a Resource,

is stored in the Topaz Profile.

Entries in the Profile, called Profile IDs, have a name and a value. The name of

an entry is similar to a path name in a file system. All names begin at the root, which is

designated by a back-slash character (\). For example, a Profile ID much used by Topaz

code internally is

\Techs\TechCount

The value of TechCount is the number of different CTADE_A Technologies

installed in this PC (a Technology is a specific hardware + API combination, for

example Dialogic R4 VOX).

Values are one of three types: integer, string, or Boolean (True / False).

You will often see the value name and value like this:

\Techs\TechCount=4

A Topaz directory may contain values such as TechCount, or may contain an

array of values all with the same name but a different integer index. (Topaz design

guidelines forbid having both arrays and non-array values in the same directory.) For

example, \TechTypes contains an array of integer values \TechTypes[0], \TechTypes[1]

... up to a maximum index TechCount–1.

114

Arrays may contain consecutive indexes as in this example, or may be

"sparse", meaning that there may be gaps in the indexes so that (say) only A[1], A[16]

and A[19] have values. If an array is sparse, CTADE_A requires that there is another,

consecutive array which lists the indexes which have values in the sparse array. To

continue the same example, there could be another array B with values B[0]=1, B[1]=16

and B[2]=19. Design guideline: CTADE_A code should never have to query a directory

to find what value names are present, hence the need for the second array and for a

value such as TechCount which specifies the size of the array. This helps maintain

forward- and backward-compatibility and improves robustness against changes in the

Resource scanner.

7.1.7.1. Updating Topaz Profile

The TopazProfile Database is update using this program:

C:\Program Files\Parity Software\Common\Topaz\Bin\TopazProfile.exe

TopazProfile.exe is a Win32 console application with the follows command

line options:

• -S Scan devices (Profile is deleted and re-built)

• -L List Profile to "TopazProfile.txt"

• -D Delete Profile

• -C <file> Copies keys from file to Profile

• -I Update Profile as for -C, filename(s) are taken from the
[ProfileIncludeFiles] section of "TOPAZ.INI"

• -F <file> Reads file, lists to standard output

• -K Keys shown as integers when listing (default is symbolic
names)

115

Creating and Configuring the Topaz Profile

Unlike the Windows Registry, user application code has no direct access to the

Profile and cannot create new entry names. The Profile is for internal use by Topaz only.

The Topaz Profile is created by running the TopazProfile program after

completing the configuration steps below.

By default the Topaz Profile is installed on the host machine’s system drive in

C:\Program Files\Parity Software\Common\Topaz\Profile

In order for Topaz to run, the Topaz.ini [Profile] section must specify the path

to the Topaz Profile.

“You configure certain Resource parameters in the Topaz Profile by making

appropriate entries in the Topaz Configuration File (Topaz.ini) or in Profile include

files.”

116

RegIds and functions Get/Set

Topaz uses other RegIDs internally to access Technology-level information.

These RegIDs do not appear in the Topaz Profile, but can be used with the Get/Set

functions to retrieve information about the system or to issue a Technology-specific

command.

The RegIDs listed in the following topics are available for the Get/Set functions.

You'll also find more descriptions of Technology-specific RegIDs in topics devoted to

each Technology.

Let see the RegsIds by technology:

7.1.7.2. Topaz RegIDs: R4AgTrunk

7.1.7.3.

Type RegID RegID Description

SetInt ScBusListenSlot 1000 Listen to this ScBus slot

SetInt OnHookDelayMs 2301 On-hook delay (x10 ms)

SetIntAPI R4AgSetParm 2300 API dx_setparm

GetInt ScBusTransmitSlot 1001 SC bus transmit time-slot

GetInt R4AgDevHandle 2302 Device handle from dx_open()

117

7.1.7.4. Topaz RegIDs: R4DxMedia

Type RegID RegID Description

SetBool AudioEventEnable 704 Enable Silence on/off events

SetBool RecordBeep 703 Enable or disable the record beep.

SetBool R4DxMediaDisableAllToneDetection 280 Removes defined tones & disables PCA,
param ignored.

SetBool R4DxMediaInitPerfectCallProgress 278 Initializes Perfect Call Analysis, param
ignored.

SetBool R4DxMediaEnableDialAnalysis 285 Enable Call Progress Analysis
R4DxMediaDial

GetBool RecordBeep 703 Record beep enabled or disabled.

GetIntAPI R4DxGetParm 221 API dx_getparm

GetInt R4DxMediaCPAConnectionType 200 API ATDX_CONNTYPE

GetInt R4DxMediaCPAAnswerSize 201 API ATDX_ANSRSIZ

GetInt R4DxMediaCPAError 202 API ATDX_CPERROR

GetInt R4DxMediaCPATerm 203 API ATDX_CPTERM

GetInt R4DxMediaCPAToneId 204 API ATDX_CRTNID

GetInt R4DxMediaCPAFailedDialToneId 205 API ATDX_DTNFAIL

GetInt R4DxMediaCPAFreq1Duration 206 API ATDX_FRQDUR

GetInt R4DxMediaCPAFreq2Duration 207 API ATDX_FRQDUR2

GetInt R4DxMediaCPAFreq3Duration 208 API ATDX_FRQDUR3

GetInt R4DxMediaCPAFreq1Hz 209 API ATDX_FRQHZ

GetInt R4DxMediaCPAFreq2Hz 210 API ATDX_FRQHZ2

GetInt R4DxMediaCPAFreq3Hz 211 API ATDX_FRQDUR3

GetInt R4DxMediaCPALongLowDuration 212 API ATDX_LONGLOW

GetInt R4DxMediaCPAFreqOutOfBoundsPct 213 API ATDX_FRQOUT

GetInt R4DxMediaCPAShortLowDuration 214 API ATDX_SHORTLOW

GetInt R4DxMediaCPANonSilenceDuration 215 API ATDX_SIZEHI

GetInt R4DxMediaCPALineStateMask 216 API ATDX_LINEST

118

GetInt R4DxMediaCPAState 217 API ATDX_STATE

GetInt R4DxMediaCPATerminationMask 218 API ATDX_TERMMSK

GetInt R4DxMediaCPABytesTransferred 219 API ATDX_TRCOUNT

GetInt PlaySpeed 702 Play speed (-10 .. 10)

GetInt PlayVolume 701 Play volume (-10 .. 10)

GetInt ScBusTransmitSlot 1001 SC bus transmit time-slot

GetInt R4DxDevHandle 223 Device handle from dx_open()

SetInt ClearSpeedVolumeDigits 709 Delete speed / volume adjustment digits

SetInt PlaySpeed 702 Play speed (-10 .. 10)

SetInt PlayVolume 701 Play volume (-10 .. 10)

SetIntAPI R4DxSetParm 220 API dx_setparm

SetInt1 R4DxVolumeDigit 710 API dx_addspddig
Additional parameter: Digit.

SetInt1 R4DxSpeedDigit 711 API dx_addvoldig
Additional parameter: Digit.

SetInt ScBusListenSlot 1000 Listen to this ScBus slot

SetInt R4DxMediaCAP_nbrdna 224 # of rings before no answer.

SetInt R4DxMediaCAP_stdely 225 Delay after dialing before analysis.

SetInt R4DxMediaCAP_cnosig 226 Duration of no signal time out delay.

SetInt R4DxMediaCAP_lcdly 227 Delay after dial before lc drop connect

SetInt R4DxMediaCAP_lcdly1 228 Delay after lc drop con. before msg.

SetInt R4DxMediaCAP_hedge 229 Edge of answer to send connect message.

SetInt R4DxMediaCAP_cnosil 230 Initial continuous noise timeout delay.

SetInt R4DxMediaCAP_lo1tola 231 % acceptable pos. dev of short low sig.

SetInt R4DxMediaCAP_lo1tolb 232 % acceptable neg. dev of short low sig.

SetInt R4DxMediaCAP_lo2tola 233 % acceptable pos. dev of long low sig.

SetInt R4DxMediaCAP_lo2tolb 234 % acceptable neg. dev of long low sig.

SetInt R4DxMediaCAP_hi1tola 235 % acceptable pos. dev of high signal.

SetInt R4DxMediaCAP_hi1tolb 236 % acceptable neg. dev of high signal.

SetInt R4DxMediaCAP_lo1bmax 237 Maximum interval for shrt low for busy.

SetInt R4DxMediaCAP_lo2bmax 238 Maximum interval for long low for busy.

119

SetInt R4DxMediaCAP_hi1bmax 239 Maximum interval for 1st high for busy

SetInt R4DxMediaCAP_nsbusy 240 Num. of highs after nbrdna busy check.

SetInt R4DxMediaCAP_logltch 241 Silence deglitch duration.

SetInt R4DxMediaCAP_higltch 242 Non-silence deglitch duration.

SetInt R4DxMediaCAP_lo1rmax 243 Max. short low dur. of double ring.

SetInt R4DxMediaCAP_lo2rmin 244 Min. long low dur. of double ring.

SetInt R4DxMediaCAP_intflg 245 Operator intercept mode.

SetInt R4DxMediaCAP_intfltr 246 Minimum signal to qualify freq. detect.

SetInt R4DxMediaCAP_hisiz 247 Used to determine which lowmax to use.

SetInt R4DxMediaCAP_alowmax 248 Max. low before con. if high >hisize.

SetInt R4DxMediaCAP_blowmax 249 Max. low before con. if high <hisize.

SetInt R4DxMediaCAP_nbrbeg 250 Number of rings before analysis begins.

SetInt R4DxMediaCAP_hi1ceil 251 Maximum 2nd high dur. for a retrain.

SetInt R4DxMediaCAP_lo1ceil 252 Maximum 1st low dur. for a retrain.

SetInt R4DxMediaCAP_lowerfrq 253 Lower allowable frequency in hz.

SetInt R4DxMediaCAP_upperfrq 254 Upper allowable frequency in hz.

SetInt R4DxMediaCAP_timefrq 255 Total duration of good signal required.

SetInt R4DxMediaCAP_rejctfrq 256 Allowable % of bad signal.

SetInt R4DxMediaCAP_maxansr 257 Maximum duration of answer.

SetInt R4DxMediaCAP_ansrdgl 258 Silence deglitching value for answer.

SetInt R4DxMediaCAP_mxtimefrq 259 max time for 1st freq to remain in bounds

SetInt R4DxMediaCAP_lower2frq 260 lower bound for second frequency

SetInt R4DxMediaCAP_upper2frq 261 upper bound for second frequency

SetInt R4DxMediaCAP_time2frq 262 min time for 2nd freq to remains in
bounds

SetInt R4DxMediaCAP_mxtime2frq 263 max time for 2nd freq to remain in
bounds

SetInt R4DxMediaCAP_lower3frq 264 lower bound for third frequency

SetInt R4DxMediaCAP_upper3frq 265 upper bound for third frequency

SetInt R4DxMediaCAP_time3frq 266 min time for 3rd freq to remains in
bounds

SetInt R4DxMediaCAP_mxtime3frq 267 max time for 3rd freq to remain in

120

bounds

SetInt R4DxMediaCAP_dtn_pres 268 Length of a valid dial tone (def=1sec)

SetInt R4DxMediaCAP_dtn_npres 269 Max time to wait for dial tone (def=3sec)

SetInt R4DxMediaCAP_dtn_deboff 270 The dialtone off debouncer (def=100ms)

SetInt R4DxMediaCAP_pamd_failtime 271 Wait for AMD/PVD after cadence
break(default=4sec)

SetInt R4DxMediaCAP_pamd_minring 272 min allowable ring duration (def=1.9sec)

SetInt R4DxMediaCAP_pamd_spdval 273 Set to 2 selects quick decision (def=1)

SetInt R4DxMediaCAP_pamd_qtemp 274 The Qualification template to use for
PAMD

SetInt R4DxMediaCAP_noanswer 275 time before no answer after first ring
(default=30sec)

SetInt R4DxMediaCAP_maxintering 276 Max inter ring delay before connect (8
sec)

SetInt R4DxMediaEnableTone 281 Enables an added tone.

SetInt R4DxMediaDisableTone 282 Disables an added tone.

SetInt R4DxMediaEnableEchoCancel 286 Enable echo cancel (dx_listenecr)

SetInt R4DxMediaEnableEchoCancelNLPOn 287 Enable echo cancel & enable NLP
(dx_listenecrex)

SetInt R4DxMediaEnableEchoCancelNLPOff 288 Enable echo cancel & disable NLP
(dx_listenecrex)

SetInt R4DxMediaDisableEchoCancel 289 Disable echo cancel, int param ignored
(dx_unlistenecr)

SetStr R4DxMediaEnableToneDetection 279 Adds a defined tone. (i.e. '101;BUSY')

SetStr R4DxMediaDefinePerfectCallProgressTone 283 Defines a PCA tone. (i.e. '253;BUSY')

SetStr R4DxMediaDial 284 Performs a dx_dial regardless of current
state

7.1.7.5. Topaz RegIDs: R4GcTrunk

Type RegID RegID Description

SetBool R4GcStoreBillingInfo 500 Store data from gc_GetBilling at end of call

SetBool R4GcAttachSupported 536 Is gc_Attach supported/needed

121

SetBool R4GcStoreAlertingInfo 515 Do we store alering info

SetBool R4GcTerminateOnAlerting 516 Do we terminate the call when alerting received

GetIntAPI R4GcGetParm 507 API gc_GetParm

GetIntAPI R4GcGetEventResultIntGC 537 Get integer event result for Global Call

GetIntAPI R4GcGetEventResultIntLIB 539 Get integer event result for specific GC library

GetIntAPI R4GcGetLinedevState 541 Get line state

GetInt CallHandle 708 Get current CRN

GetInt ScBusTransmitSlot 1001 Get Sc Bus transmit Slot

GetInt R4GcCallInfoCategoryDigit 547 Calling party category for the call

GetInt R4GcCallInfoConnectType 548 Connection analysis

GetInt R4GcGetCallState 504 Get call state

GetInt R4GcGetNetCRV 542 Get network CRV

GetInt R4GcCPAConnectionType 519 Get connection type CPA result

SetIntAPI R4GcSetParm 508 API gc_SetParm

SetIntAPI R4GcSetBillingInfo 511 API gc_SetBilling

SetInt R4GcDNISDigitCount 501 Number of overlap DNIS digits to expect

SetInt R4GcCPACallTimeout 503 Timeout (seconds) before reporting Ring No Answer

SetInt ScBusListenSlot 1000 Listen to this ScBus slot

SetInt R4GcAckServiceISDN 543 Send the first response to an incoming call

SetInt RingsBeforeAnswer 700 How many rings before answer is reported

SetInt R4GcSetSigInfoId 555 What sig info to get: UUI(7) or U_IES(16)

SetInt R4GcSetMsgTypeId 557 What msg type to send, i.e. SndMsg_Congestion

SetInt R4GcAcceptCall 518 Accept Call function

SetInt R4GcMKBSetDefaults 589 Set MAKECALL_BLK to default values

SetInt R4GcMKBXferCap 570 MAKECALL_BLK.BC_xfer_cap

SetInt R4GcMKBXferMode 571 MAKECALL_BLK.BC_xfer_mode

SetInt R4GcMKBXferRate 572 MAKECALL_BLK.BC_xfer_rate

SetInt R4GcMKBUsrL1Protocol 573 MAKECALL_BLK.usrinfo_layer1_protocol

SetInt R4GcMKBUsrRate 574 MAKECALL_BLK.usr_rate

SetInt R4GcMKBDestNumType 575 MAKECALL_BLK.destination_number_type

122

SetInt R4GcMKBDestNumPlan 576 MAKECALL_BLK.destination_number_plan

SetInt R4GcMKBDestSubNumType 577 MAKECALL_BLK.destination_sub_number_type

SetInt R4GcMKBDestSubNumPlan 578 MAKECALL_BLK.origination_sub_number_plan

SetInt R4GcMKBOrigNumType 579 MAKECALL_BLK.origination_number_type

SetInt R4GcMKBOrigNumPlan 580 MAKECALL_BLK.origination_number_plan

SetInt R4GcMKBOrigSubNumType 581 MAKECALL_BLK.origination_sub_number_type

SetInt R4GcMKBOrigSubNumPlan 582 MAKECALL_BLK.origination_sub_number_plan

SetInt R4GcMKBFacilityFeatureService 583 MAKECALL_BLK.facility_feature_service

SetInt R4GcMKBFacilityCodingValue 584 MAKECALL_BLK.facility_coding_value

SetInt R4GcMKBCompletionPoint 585 MAKECALL_BLK.completion_point

GetStr R4GcGetBillingInfo 510 Billing info

GetStr R4GcGetEventResultStrGC 538 Get string event result for Global Call

GetStr R4GcGetEventResultStrLIB 540 Get string event result for specific GC library

GetStr R4GcCallInfoType 546 Charge or no charge call

SetStr R4GcMKBDestSubPhoneNr 586 MAKECALL_BLK.destination_sub_phone_number

SetStr R4GcMKBOrigPhoneNr 587 MAKECALL_BLK.origination_phone_number

SetStr R4GcMKBOrigSubPhoneNr 588 MAKECALL_BLK.origination_sub_phone_number

SetStr R4GcCallingAddress 534 Phone number of this trunk

SetStr R4GcTraceFileName 535 API gc_StartTrace (empty string=gc_StopTrace)

GetBin R4GcCallInfoU_IES 549 Get unformatted information elements

GetBin R4GcCallInfoUUI 550 Get user-to-user info

GetBin R4GcGetFrame 551 Retrieve the frame received by application

GetBin R4GcGetIE 553 Retrieve the info element from the incoming message

GetBin R4GcGetSigInfo 556 Get signalling info from incoming message

GetBin R4GcCallInfo 514 Get prevoiusly stored callinfo

SetBin R4GcSetIE 554 Set info element for outgoing message

SetBin R4GcSndFrame 552 Send the frame

SetBin R4GcSndMsg 512 API gc_SndMsg

123

7.1.7.6. Topaz RegIDs: R4MsTrunk

Type RegID RegID Description

SetBool R4MsLoopOnIsInboundCall 324 Interpret loop on as seize

SetBool R4MsAcceptByDialTone 325 Accept in-bound call by playing dial
tone

SetBool R4MsOutboundByRing 326 Make out-bound call by ringing

SetBool R4MsOutboundByZipTone 327 Make out-bound call by playing zip
tone

SetBool R4MsDisconnectByBatteryOff 328 Disconnect by turning battery off

SetBool R4MsTrunkFlashHookFlag 332 Set flag which 'remembers' flash-hook

GetBool R4MsTrunkFlashHookFlag 332 Get flag which 'remembers' flash-hook

SetInt R4MsTrunkWaitFlashHook 333 Wait flash-hook, parm is secs time-out

SetInt R4MsRingCount 321 Max times to ring station 0..255

SetInt R4MsDisconnectMs 329 Battery off time for disconnect (ms)

SetInt R4MsAdjustStationVolume 322 API ms_setvol (VOLADJ)

SetInt R4MsSetStationVolume 323 API ms_setvol (VOLRES then
VOLADJ)

SetInt ScBusListenSlot 1000 Listen to this ScBus slot

SetIntAPI R4MsSetBoardParm 330 Set board level parameter

SetIntAPI R4MsSetStationParm 331 Set station level parameter

7.1.7.7. Topaz RegIDs: S100Conf

Type RegID RegID Description

SetInt S100ConfCreateTimeout 2500 Maximum time to wait for availability of conference
resources.

SetInt S100GroupCreateTimeout 2501 Maximum time to wait for availability of group
resources.

GetInt S100ConfCreateTimeout 2500 Maximum time to wait for availability of conference
resources.

124

GetInt S100GroupCreateTimeout 2501 Maximum time to wait for availability of conference
resources.

7.1.7.8. Topaz RegIDs: S100Fax

Type RegID RegID Description

SetBool S100FaxAutoFooter 2408 Footer text source: if true, from fax hardware, else
from application.

SetBool S100FaxAutoHeader 2409 Header text source: if true, from fax hardware, else
from application.

GetBool S100FaxAutoFooter 2408 Footer text source: if true, from fax hardware, else
from application.

GetBool S100FaxAutoHeader 2409 Header text source: if true, from fax hardware, else
from application.

SetInt S100FaxFirstPageNum 2411 Number of the first page to be transmitted.

SetInt S100FaxFooterLength 2413 Maximum number of characters in the page footer.

SetInt S100FaxHeaderLength 2416 Maximum number of characters in the page header.

GetInt S100FaxScanTime 2403 Negotiated scan time in milliseconds.

GetInt S100FaxTransferSpeed 2404 Negotiated transfer speed in bits per second.

GetInt S100FaxSMPageNum 2405 The page of SM Data object that was transferred.

GetInt S100FaxHeaderNum 2406 The latest page number on the fax header.

GetInt S100FaxPagesTransferred 2407 The number of pages transferred.

GetInt S100FaxFirstPageNum 2411 Number of the first page to be transmitted.

GetInt S100FaxFooterLength 2413 Maximum Number of characters in the page footer.

GetInt S100FaxFooterPlacement 2414 Selects the way footers are placed into the transmitted
image.

GetInt S100FaxHeaderLength 2416 Maximum number of characters in the page header.

GetInt S100FaxHeaderPlacement 2417 Selects the way headers are placed into the transmitted
image.

GetInt S100FaxPageWidth 2418 Maximum width of a transmitted page in Pixels.

SetStr S100FaxFaxID 2410 Fax ID of local fax.

SetStr S100FaxFooterField 2412 Text for fax footer field.

SetStr S100FaxHeaderField 2415 Text for fax header field.

125

GetStr S100FaxRemoteID 2401 Fax ID of remote fax machine.

GetStr S100FaxFaxID 2410 Fax ID of local fax.

GetStr S100FaxFooterField 2412 Text for fax footer field.

GetStr S100FaxHeaderField 2415 Text for fax header field.

7.1.7.9. Topaz RegIDs: S100Media

Type RegID RegID Description

SetBool S100RecorderStartBeep 2600 Precede record with a beep.

SetBool S100RecorderPauseCompressionOn 2602 Remove speech pauses from recording if true.

GetBool S100RecorderStartBeep 2600 Precede record with a beep.

GetBool S100RecorderPauseCompressionOn 2602 Remove speech pauses from recording if true.

SetInt S100RecorderBeepFrequency 2604 Frequency of record start beep in Hertz.

SetInt S100RecorderBeepLength 2605 Length of record start beep in milliseconds.

SetInt S100RecorderCoder 2606 Coder type for record.

SetInt S100RecorderMinDuration 2608 Minimum duration of record in milliseconds.

SetInt S100RecorderPauseThreshold 2609 The threshold time in milliseconds for which pause
compression is triggered.

SetInt S100RecorderSilenceThreshold 2610 The threshold time in milliseconds for which
silence termination is triggered.

GetInt S100RecorderBeepFrequency 2604 Frequency of record start beep in Hertz.

GetInt S100RecorderBeepLength 2605 Length of record start beep in milliseconds.

GetInt S100RecorderCoder 2606 Coder type for record.

GetInt S100RecorderMinDuration 2608 Minimum duration of record in milliseconds.

GetInt S100RecorderPauseThreshold 2609 The threshold time in milliseconds for which pause
compression is triggered.

GetInt S100RecorderSilenceThreshold 2610 The threshold time in milliseconds for which
silence termination is triggered.

GetStr S100CurrentContainer 2700 Current container.

126

SetStr S100CurrentContainer 2700 Current container.

7.1.8. CTADE_A. Configuration. TOPAZ.INI

The Topaz.ini file is used to specify various configuration parameters that are read by the

Topaz engine when it is first invoked on your system. If you change any entries in Topaz.ini, you

must be sure that all instances of VOS and CallSuite, which use Topaz, are closed before the

changes can take effect.

Sección Descripción

[Profile] Topaz Profile startup information.

[ProfileIncludeFiles] Include files to be merged with the Topaz

Profile during AutoMerge

[ProfileExcludeTechnologies] Telephony technologies to exclude from the

Topaz Profile scan

[ProfileDependencies] Windows NT/2000 services that must be

started before the TopazProfile.exe utility

will start..

[SimMediaScanner] IDs of the Wave In and Wave Out devices

you want SimMedia to use.

127

[WaveScanner] IDs of the Wave In and Wave Out devices

you want WaveMedia to use.

[S100Groups] S100 groups and their corresponding Topaz

Resources that will be used by the

application.

[S100Defaults] Defaults for keys in the [S100Groups]

section.

7.1.8.1. [Profile] Section

The Profile section of Topaz.ini lets you set parameters that control the Topaz

Profile at startup.

[Profile]

Path=e:\Program Files\Parity Software\Common\Topaz\Profile

7.1.8.2. [ProfileIncludeFiles] Section

The ProfileIncludeFiles section of Topaz.ini lists the files that are to be copied to

the Topaz Profile each time the TopazProfile.exe utility runs with the Include (-I) option.

Example

[ProfileIncludeFiles]
C:\Topaz\LangRegs.tzp
C:\Topaz\IPFRegs.tzp

128

7.1.8.3. [ProfileExcludeTechnologies]Section

The ProfileExcludeTechnologies section of Topaz.ini lists technologies that are to

be excluded from the TopazProfile.exe Autoscan.

Example
[ProfileExcludeTechnologies]
S100Trunk
S100Media

7.1.8.4. [ProfileDependencies] Section

The ProfileDependencies section of Topaz.ini lists the Windows NT/2000 services

that must be started before the TopazProfile.exe utility will start.

Example

[ProfileDependencies]
Alerter
Dialogic

7.1.8.5. [SimMediaScanner] Section

The SimMediaScanner section of Topaz.ini specifies the IDs of the Wave In and

Wave Out devices you want SimMedia to use.

[SimMediaScanner]
WaveIn=<Wave In ID>
WaveOut=<Wave Out ID>

By default, both Wave ID values are zero.

Example

[SimMediaScanner]
WaveIn=1
WaveOut=1

7.1.8.6. [WaveScanner] Section

The WaveScanner section of Topaz.ini specifies the IDs of the Wave In and Wave

Out devices you want the WaveMedia technology to use.

129

Example

[WaveScanner]
WaveDeviceID0=1,1

7.1.8.7. [S100Groups] Section

The S100Groups section of Topaz.ini specifies the S100 groups and their

corresponding Topaz Resources that will be used by the application.

Default settings for the S100Groups section entries are stored in the [S100Defaults] Section.

Example

[S100Groups]
CCRGroups = 4
withMedia
ASI = CCRMEDIA_ASI

7.1.8.8. [S100Defaults] Section

The S100Defaults section of Topaz.ini specifies default values for keys in the

S100Groups section. If you do not specify a default value for a key in the S100Defaults

section, Topaz will use the standard default value. Valid keys and their default values are

listed in the example.

Example

[S100Defaults]
Server = Default_Server
AppProfile = Parity_TOPAZ_ProfileS100v2
MakeCallGroupConfig =
MakeCallGroupSet =
SPRGroupConfig = SPRMEDIA_GROUPCONFIG
SPRGroupSet = SPRMEDIA_GROUPSET
SPROnlyGroupConfig = SPRONLY_GROUPCONFIG
SPROnlyGroupSet = SPRONLY_GROUPSET

The MakeCallGroupSet, SPROnlyGroupSet, and SPRGroupSet keys apply only to
CT Media V1. Group sets were removed from CT Media Version 2.

See S100 Topaz.ini Configuration for a detailed description of this section and the

S100Groups section

130

7.1.9. CTADE_A. Tones

In this chapter, we will see how to generate and detect tones.

7.1.9.1. Playing Tones.

Tones, also called general tones or global tones, may be one of the following four types:

single, dual, single with cadence, and dual with cadence.

Single and Dual Tones

A single tone has only one amplitude and frequency. A dual tone has two sets of amplitudes

and frequencies. Most familiar tones from the public telephone network, including touch-

tones, are dual tones.

Cadence

A tone with cadence has a regular pattern of periods where the tone is present and where

there is silence. In the US, the busy tone is a cadence tone. A cadence pattern looks like

this:

Tones without cadence are called continuous tones. For example, touch tones are

continuous tones.

131

Playing Tones

You can play a single continuous tone with the MediaPlaySingleContinuousTone

function:

MediaPlaySingleContinuousTone(Freq1, Amp1, Duration, StopTones);

The Freq1 parameter defines the frequency of the tone, which can be between 300 and 2000

Hz. The Amp1 parameter defines the tone's amplitude, measured in decibels. Valid

amplitudes range from -40 to 2 dB. The Duration parameter specifies the length of the tone,

in tenths of a second. The StopTones parameter is a string of the touch tone digits that will

interrupt the playing or recording of any sound file.

To play a continuous dual tone, use the MediaPlayDualContinuousTone function:

MediaPlayDualContinuousTone(Freq1, Amp1, Freq2, Amp2, Duration, StopTones);

The parameters are almost identical to MediaPlaySingleContinuousTone, except that Freq2

and Amp2 specify the frequency and amplitude of the second component of the tone.

The functions that play cadence tones are similar to those that play continuous tones:

MediaPlaySingleCadenceTone(Freq1, Amp1, OnTime, OffTime, Count, StopTones);

MediaPlayDualCadenceTone(Freq1, Amp1, Freq2, Amp2, OnTime, OffTime, Count,

StopTones);

132

In addition to the Freq1, Amp1, Freq2, and Amp2 parameters, which are used just as in the

continuous tone functions, the OnTime parameter specifies the length of time, in tenths of a

second, that the tone plays in each repetition of the cadence. The OffTime parameter defines

the length of the silence, in tenths of a second, in each repetition of the cadence. The Count

parameter specifies the number of times to repeat the cadence.

If you've set up the parameters for a tone in the Topaz Profile, you can play that tone on a

Media Resource with the MediaPlayTone function:

MediaPlayTone(ToneName, StopTones);

The ToneName parameter must match the name of a tone you've set up in the Topaz Profile.

The optional StopTones parameter sets the stop tones.

7.1.9.2. Tone Include File

The tone include file is a .TZP file that lets you specify which tones are directly

supported by CTADE_A.

Note

In order to add information to the Topaz Profile from your tone include file, you must merge

the Topaz Profile with the include file using the TopazProfile.exe Copy command (-C). To

make sure that the most recent tone include file is merged with CTADE_A each time it

starts, you can add a reference to the include file in the [ProfileIncludeFiles] section of the

Topaz.ini file and use the TopazProfile.exe Include option (-I).

133

ToneCount

The ToneCount Profile ID specifies how many tones are to be defined. Remember that tones

are numbered starting with 0.

ToneName

The tone name is used by your VOS application to specify which tone to play.

ToneType

Currently, four types of tones are supported in CTADE_A:

SingleContinuous

SingleCadence

DualContinuous

DualCadence

See Playing Tones for descriptions of single and dual, continuous and cadence tones.

 Frequencies (ToneFreq1, ToneFreq2)

The frequency of the tone can be between 300 and 2000 Hz.

Amplitudes (ToneAmp1, ToneAmp2)

A tone's amplitude is measured in decibels. Valid amplitudes range from -40 to 2 dB.

ToneOnTime

The ToneOnTime parameter specifies the length of time, in tenths of a second, that the

tone plays in each repetition of the cadence.

ToneOffTime

The ToneOffTime Profile ID defines the length of the silence, in tenths of a second, in

each repetition of the cadence.

134

ToneFreq1Var

Variance allowed during detection of frequency 1, in Hz.

ToneFreq2Var

Variance allowed during detection of frequency 2, in Hz.

ToneOnTimeVar

Variance in the cadence "OnTime" allowed during detection of the tone, in tenths of a

second.

ToneOffTimeVar

Variance in the cadence "OffTime" allowed during detection of the tone, in tenths of a

second.

ToneRepetitions

Number of repetitions of the cadenced tone required before affirmative detection.

ToneChar

ToneChar assigns a character (from E to Z) to the tone. Before you can perform custom

tone detection, you must assign a character to the tone.

ToneIsBuffered

ToneIsBuffered is a Boolean value that indicates whether CTADE_A will place the

tone's character in the digit buffer, to be retrieved by the VOS MediaGetDigitBuffer

function.

135

Examples
\ToneCount=5

\Tones[0]\ToneName=BUSY
\Tones[0]\ToneType=DualCadence
\Tones[0]\ToneFreq1=480
\Tones[0]\ToneAmp1=-20
\Tones[0]\ToneFreq2=620
\Tones[0]\ToneAmp2=-20
\Tones[0]\ToneOnTime=5
\Tones[0]\ToneOffTime=5

\Tones[1]\ToneName=DIAL
\Tones[1]\ToneType=DualContinuous
\Tones[1]\ToneFreq1=350
\Tones[1]\ToneAmp1=-20
\Tones[1]\ToneFreq2=440
\Tones[1]\ToneAmp2=-20

\Tones[2]\ToneName=TestTone
\Tones[2]\ToneType=DualContinuous
\Tones[2]\ToneFreq1=1209
\Tones[2]\ToneFreq2=697
\Tones[2]\ToneAmp1=-20
\Tones[2]\ToneAmp2=-20
\Tones[2]\ToneChar=T
\Tones[2]\ToneIsBuffered=True

\Tones[3]\ToneName=DISCONNECT
\Tones[3]\ToneType=DualContinuous
\Tones[3]\ToneFreq1=1477
\Tones[3]\ToneFreq2=697
\Tones[3]\ToneFreq1Var=50
\Tones[3]\ToneFreq2Var=50

\Tones[4]\ToneName=DISCONNECT2
\Tones[4]\ToneType=DualCadence
\Tones[4]\ToneFreq1=697
\Tones[4]\ToneFreq2=1477
\Tones[4]\ToneOnTime=10
\Tones[4]\ToneOffTime=10
\Tones[4]\ToneFreq1Var=50
\Tones[4]\ToneFreq2Var=50
\Tones[4]\ToneOnTimeVar=5
\Tones[4]\ToneOffTimeVar=5
\Tones[4]\ToneRepetitions=2

136

88.. VVOOSS RRuunnttiimmee--LLoogg

The VOS Runtime is generating logs in the files VOS1.log and VOS2.log. The Latest logs is always

in the file VOS1.log. The content of these files is as follow:

Start of run

010518 172034.35 VOS loaded from C:\Program Files\Parity Software\Graphical
VOS\Bin\Vos7d.dll

010518 172034.35 VOS 7 (Debug) Built Apr 4 2001 13:43:51

End of run

010518 172038.05 CASEST~1:062b[0] VOS 7 (Debug) Built Apr 4 2001 13:43:51

010518 172038.05 CASEST~1:062b[0] Stopping: exit(21)

Warnings, Failures, and Errors

010518 172036.14 @W 713 RLL Adorll missing, wrong version or loaded in wrong order

010518 172036.17 CASEST~1:149b[0] @F fil_open(LOGO,r): 088 error 2

010518 172037.91 CASEST~1:0606[0] @E CADOConn 'Open' : Films : COM Error
0x80004005(Unspecified error) : _Connection::Open()

010518 172037.91 CASEST~1:0606[0] Source = Microsoft OLE DB Provider for ODBC
Drivers

010518 172037.91 CASEST~1:0606[0] Description = [Microsoft][ODBC Microsft
Access Driver] Could not find file '(unknown)'.

137

Builtin function calls

010518 172036.15 CASEST~1:004b[0] @B getpid() = 0

Driver / API

010727 164728.19 @D ATDX_TERMMSK(1[dxxxB1C1])=0x0

010727 164728.19 @D Dev 1 dxxxB1C1 Evt 0x86 Data 0x15b9350 CST Data 0x0 Rings received

010727 164728.19 @D ATDX_TERMMSK(1[dxxxB1C1])=0x0

Topaz Events / States

010727 164728.19 CASEST~2:0017[1] @Y Trunk:0 Event dxxxB1C1[1] 134 CST Data 0x0 Rings
received

010727 164728.19 CASEST~2:0017[1] @Z Trunk:0 Idle->InboundRinging (1)

010727 164728.19 ResumeTask(1, 1)

010727 164728.27 CASEST~2:001f[1] @D dx_sethook(1[dxxxB1C1], 1, EV_ASYNC)=0

010727 164728.27 CASEST~2:001f[1] @B TrunkAnswerCall() = 1

Built-in functions returns

R4 library function returns

TOPAZ Event

Topaz state change

