
Intel in
Communications

High Availability Features in
Intel® Dialogic® System Release
6.0 CompactPCI* for Windows*

Application Note

Contents
Introduction 1

Peripheral Hot-Swap 1

Basic Hot-Swap 1

Full Hot-Swap 1

Redundant System Slot 1

Peripheral Redundancy 3

Software Architecture 3

Device Driver Interaction 4

RSS Software 5

RSS High Availability (HA) API 5

PHS Software 6

Hot-Swap Kit 6

Management Software 6

Fault Management 9

Alarm Management 11

Clock Management 11

Resource Management 11

Executing POST on Boards 13

CompactPCI* Platforms 16

Intel® NetStructure™ ZT5084 10U High Availability Platform 16

Intel® NetStructure™ ZT5985 12U Redundant Host Packet Switched 16
Platform

Adding PHS Support 17

Adding Redundant System Slot Support 17

Sample Applications 17

For More Information 17

Appendix: Glossary 19

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows* Application Note

Figures
Figure 1: HA software architecture . 2

Figure 2: Example of registering for events . 3

Figure 3: Example of fault detection . 4

Figure 4: Fault detection and recovery . 10

Figure 5: Event services state machine . 13

Figure 6: Executing POST . 14

Figure 7: Executing POST (continued) . 15

Tables
Table : RSS API functions . 6

Table 2: NCM API functions . 7

Table 3: SRL API functions . 8

Table 4: Event service API functions . 8

Table 5: Types of faults . 9

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows* Application Note

Introduction
This paper discusses the new features of Intel®

Dialogic® System Release 6.0 for CompactPCI
that enable users to build high availability (HA)
into telecommunication systems. The HA
features included in the System Release are:
■ Peripheral hot-swap (PHS)

■ Redundant system slot (RSS)

■ Peripheral redundancy

The System Release supports a range of
CompactPCI servers and single-board
computers. This paper discusses in detail the
RSS on the Performance Technologies*
ZT5084 platform and the Intel® NetStructure™
ZT5550 single-board computer.

Peripheral Hot-Swap
Peripheral hot-swap (PHS) for CompactPCI
systems is one of the most popular and
cost-effective HA architectures. It allows for the
online repair, upgrade, or addition of
peripherals in a CompactPCI chassis without
the need to power down the system.
Peripherals can be telephony boards, disk
drives, fans, power supplies, management and
alarm modules, and more. PHS can have a
significant impact on reducing downtime, both
planned and unplanned.

PHS, as defined by the PICMG 2.1 and PICMG
2.12 specs, can be divided into two models:
basic hot-swap and full hot-swap.

Basic Hot-Swap
The basic hot-swap model defines the
parameters and attributes to insert or remove a
peripheral device (e.g., a board) without causing
any interrupts or activity on the PCI bus. Since
the backplane needs to be passive for this zero-
activity, some operator intervention is required at
the console to indicate to the operating system
that a board needs to be removed or inserted.
When instructed by the operator, the operating
system shuts down all active operations on the
board, thus making the board non-functional in
the system and safe for removal. If a board is
being inserted, the new CompactPCI signal,
ENUM#, informs the operating system (OS) that
a board is requesting enumeration and allocation
of resources. This model is the simplest and less
automatic.

Full Hot-Swap
The full hot-swap model enhances the basic
hot-swap model by defining a method that-
indicates to the OS that a board is being
inserted into or removed from the system. This
is accomplished by a microswitch attached to
the IEEE 1101.10-compliant board that signals
the OS that an operator is about to insert or
remove a board. This microswitch is connected
to the handles of the board that are used to
either insert or remove the peripheral device.
When the microswitch is tripped, the
enumeration interrupt (ENUM#) indicates to the
OS about the insertion or removal. The
operating system then signals the operator, via
a blue LED on the face of the board, that it is
acceptable to remove the board. If a board
were being inserted, the OS would
automatically configure the board, thus
eliminating the need for reconfiguring the
system at the console. This model is more
complex to implement, but does not require
any operator intervention.

Redundant System Slot
Redundant system slot (RSS) systems provide
for redundant, hot-swappable, single-board
computers (SBCs) in a CompactPCI system.
Such a system builds on the capabilities of a
peripheral hot-swap (PHS) CompactPCI system
by eliminating the SBC as a single point of
failure.

An RSS platform can support different modes
of operation such as Active-Standby mode and
Active-Active mode. The two SBCs in the RSS
platform are installed on the same CompactPCI
backplane, which can be configured with
software to simultaneously or independently
control two CompactPCI bus segments.

In the Active-Standby mode, there are two
SBCs in the RSS platform. However, only one
SBC is active at any time. This one SBC has
control of all the I/O Slots. The standby SBC is
aware of — and to some extent synchronized
with — operations on the active SBC and
ready for failover to occur. The standby SBC
monitors and takes over operations if a failure
should occur on the active SBC.

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

1

Application Note

In the Active-Active mode (also called the Split
mode), each SBC controls one CompactPCI
bus segment. Each SBC also acts as a
standby for the bus segment it does not
control. In this model, both SBCs are able to
contribute resources. Customized software is
provided to take advantage of this model’s
benefits, which include fast failover into an
Active-Standby state and load sharing and
redundancy (both of which can be achieved in
this mode of operation). When an SBC fails,
the second active SBC will takes over
operations of the failed one and continues
operations on the peripherals managed by the
failed SBC.

There are two primary advantages of RSS:
1. Elimination of the SBC as a single point

of failure, removing the need to duplicate
costly peripherals and extensive application
changes.

2. “Dark closet” operation, where there is
no need to have an operator to add/remove
malfunctioning peripheral devices.

Note that the RSS standard (PICMG 2.13) has
not yet been ratified and many CompactPCI
platform vendors currently offer proprietary and
non-interoperable solutions. Thus, it is
important to carefully evaluate the needs and
requirements of the system being built and
choose the right high-availability solution.

Application Note

2

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

Telephony Application

Management Software

NCM API Fault Detector Event Service API

Device
Management

Software
RSS
API

PnP Observer Win32 API

Plug and Play System

Telephony
Device
Drivers

RSS DriversNet Swap
Drivers

Application
Programming

Interface

Chassis
Vendor

Microsoft*

Hot-Swap Kit

Intel

Telephony
Hardware

SBC SBC

PCI PCI

High Availability Software Component Architecture

Figure 1: HA software architecture

Peripheral Redundancy
While PHS is effective in reducing the time to
repair, by itself it does not protect against
operational downtime or the time needed to
procure a spare device and to dispatch a
technician to make the repair. To protect
against operational downtime, redundancy of
peripherals (N+1 redundancy) is introduced.
With peripheral redundancy, if a peripheral
malfunctions, the spare peripheral takes over
operations of the malfunctioning peripheral
without operator intervention. A repair
technician can then be dispatched, somewhat
less urgently, to restore redundancy to the
system. Not only does peripheral redundancy

enable the replacement of failed components
with minimal downtime, it also allows for
preventative maintenance.

Software Architecture
The System Release provides all the software
components needed to build HA into telephony
applications. The components include the
hot-swap driver kit that is configured for
specific chassis, management and fault
detection software, and sample demonstration
applications.

Figure 1 shows the architecture of the software
components. The System Release provides all
the components shown in the figure.

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

3

Application Note

Scenario of Registering with the Event Notification Framework

Event Notification
Framework

The Application Fault Detector Telephony Driver Telephony Board

DlgAdmincnsumer::DlgAdminConsumer()

Create Observer for
Specified Channel

Specify Filters
and Channel

Implement
HandleEvent()

Callback

Enable Filters()
Start Listening()

HandleEvent

getChannelName

Post Message
for Dispatch

Send Message for Registering for
Specified Events

Network Alarm Event
Detected

Figure 2: Example of registering events

The architecture is best explained by the
following scenarios. One shows how an
application registers to receive notifications; a
second shows the interactions when a fault
occurs on a board.

Figure 2 shows the interactions between the
components used to register for alarm and
fault notifications from peripheral boards. Here
is an outline of the application:
■ The application creates an object of type

DlgAdminConsumer by invoking the
constructor of the class and passing in the
channel type (e.g. FAULT_CHANNEL).

■ This object then creates the necessary
connections and sets up the communication
between the various software components
involved in the transaction.

■ The application specifies filters for events it is
interested in monitoring.

■ A callback function HandleEvent() is imple-
mented by the application invoked by the
event notification framework whenever a
specified event is observed.

■ When an event is observed, the application
receives all necessary information (i.e., the
Channel name (FAULT_CHANNEL), the AUID
of the board) to perform any actions.

Figure 3 shows an example of an application
receiving an event when a DSP fault occurs on
a peripheral board.

The main components in this transaction are
the application, the device driver for the board,
and management software that includes the
Fault Detector and the Event Service along
with the event notification framework. When a
DSP on the telephony board fails, the firmware
running on the board notifies the controller
application by sending a message. This
controller application is the Fault Detector that
has registered for various alarms and faults at
the time of initialization. When it receives this
fault notification, it queues an event to the
Event Service’s event notification framework.
Eventually, the host application is notified of
the event on the registered callback function.
At that time, the application can act upon the
event and perform necessary operations or
actions

Device Driver Interaction
The hot-swap system software resides
between the operating system and hardware
and acts as a hot-plug system monitoring
software. The main tasks of this monitoring
software are to detect hot-swap events,
identify the board’s required memory/interrupt

Application Note

4

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

Scenario of DSP Fault Detected by an Application

Telephony DriverTelephony Board Fault Detector Event Service The Application

Reset Board
And Run POST

Notify with DLGC_EVT_SP_FAILURE

Post Message on FAULT_CHANNEL

Message (Fault Information)

Fault Observed

Figure 3. Example of fault detection

resources, and dynamically allocate them (or
deallocate them upon board removal). To
detect live insertion/removal of CompactPCI
devices from the bus, the hot-swap engine can
use one of the following methods:
■ Polling the CompactPCI bus

■ Polling the enumeration interrupt (ENUM#)

When the hot-swap system software detects
the ENUM signal, it informs the Windows 2000
subsystem, specifically the Plug-n-Play
Manager, of the detected event. The hot-swap
system software has a well-defined, published
interface with the Windows 2000 operating
system (which supports plug/play events).
Through this mechanism, the operating system
is made aware of the newly-inserted device.
The Plug-n-Play Manager provides a
mechanism for device drivers and other
applications to be notified when certain events
occur on a specific device or on the system in
general. These events include arrival and
departure of device interfaces of the specified
class, and device removal requests. When an
event occurs, the Plug-n-Play Manager module
calls the device driver’s “add” or “init” entry
points to process the initialization of the device
drivers after allocating resources (e.g., interrupt,
memory) as needed for the device.

Similarly, when the device is removed, the
Plug-n-Play Manager calls the registered
“remove” entry points in the device driver to
handle the device removal requests and handle
the freeing of allocated resources.

RSS Software
The RSS software is a separate package that
can be installed before or after the System
Release software. Refer to the release guide for
a list of chassis tested with the release and for
other system requirements.

For information about installing RSS software,
see Redundant System Slot Software for the

ZT5550 High Availability Processor Board
Software Manual (RSS_Software_Manual.pdf).
This manual and the executable file that installs
the RSS software (ZRSS.exe) are located in the
rss directory on the System Release CD-ROM.
A sample application is included in this pack-
age that allows you to simulate a takeover or a
failover of CPU cards. This sample application
also demonstrates the use of the RSS API that
is part of the SDK. The API allows you to
program for:
■ Fault configuration

■ Isolation strategies

■ Application notification

■ Remote diagnostics

The RSS software provided by the System
Release supports the Performance
Technologies* ZT5084 CompactPCI system
and the ZT5550 system master board (SBC).
As mentioned earlier, this paper discusses the
features of the CompactPCI system and SBC.

RSS High Availability (HA) API
The RSS HA API is discussed in the software
manual (RSS_Software_Manual.pdf) provided
by Performance Technologies. Some of the API
functions are discussed in this section. For a
telephony application to support RSS, it needs
to register itself for notifications from the HA
drivers and software components of the
processor board. The rssmanager sample
application included in System Release for
Windows 2000 shows you how to use the APIs
provided.

A host application uses the API by including
the CompactHA.h header file and linking to the
CompactHA.lib library file. Necessary parame-
ter constants and types are defined in
CompactHACnst.h and CompactHATypes.h.
These header files and libraries are installed
when the RSS software is installed on your
system.

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

5

Application Note

Table 1 lists some of the commonly used APIs

Application Note

6

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

API Description

HAConnect Connects the host application to the HA framework.

HADisconnect Terminates the connection with the host application.

HAConfigurationMode Sets the current host’s configuration mode. A host can only be
placed in the configuration mode if it is not the active one.

HAEnableNotification Enables the interrupt service routine to field the specified interrupt
type. The callback function specified by the cbFunc parameter
allows the host application to perform specific tasks based on the
interrupt occurring. The application may register to receive
notifications about faults and host state change by specifying
different callback functions.

HADisableNotification Prevents the host-application-defined interrupt service routine from
fielding the specified interrupt types.

HAGetHostStatus Reports the current host system status. Statuses available for query
include system status and configuration information.

HAGetSlotID Retrieves the physical slot information for the calling host.

Table 1: RSS API functions

PHS Software
The System Release software includes a
hot-swap driver kit that can be configured for
various chasses.

The telephony device drivers are configured
automatically at install time for the specified
chassis to perform the necessary hot-swap
operations.

Hot-Swap Kit
The Hot-Swap Kit (HSK) is a CompactPCI
hot-swap infrastructure product that supports
automatic software connection and disconnec-
tion when boards are hot-inserted or hot-
extracted. HSK provides the functional device
drivers that fully support the native Device
Driver Model for Windows 2000. HSK was the
first product for Windows 2000 to achieve
General Use Full Hot-Swap compliance as
defined by PICMG 2.1, the CompactPCI
hot-swap specification.

With the HSK installed on your CompactPCI
system, you can:

■ Insert and extract CompactPCI peripheral
boards into and from a chassis with auto-
matic software connection/disconnection of
those boards and no rebooting.

■ Use native application notification
mechanisms to enable application monitor-
ing of board insertions and removal requests.
These notifications are delivered to the
application via the Event Service API.

In conjunction with the HSK, the System
Release device drivers automatically configure
the PCI-to-PCI bridge windows for
CompactPCI bus segments to ensure suffi-
cient address space for hot insertions (since
the BIOS-allocated windows are usually not
sufficient). This is performed at driver initializa-
tion time after the telephony boards have been
detected. Also, DCM, the configuration man-
agement GUI, provides physical slot geogra-
phy of your system and displays the physical
slot numbers, enabling operators to manage
the systems better.

Management Software
The System Release provides management
software that allows you to configure and
monitor peripheral telephony devices. Fault
detection, repair, and isolation components are
also included.

The main components required to implement
HA are:
■ Fault management

■ Alarm management

■ Clock management

■ Peripheral resource management

The System Release includes the Event Service
API and Event Notification Framework. The API
is used to register your application with the
Event Notification Framework. The Framework
is the subsystem for all operations, administra-
tion, maintenance, and provisioning (OAM&P)
services to send asynchronous messages to
registered telephony applications. For detailed
information on the Event Service API and the
Event Notification Framework, refer to the pro-
gramming guides included in the release docu-

mentation. The framework contains various
channels used to report a set of events that
correspond to solicited or unsolicited actions of
an operator.

Another library, the NCM API, provides an API
to manage and monitor operations on the
peripheral telephony devices. This API allows
you to retrieve board-level information such as
the physical slot ID, PCI Bus information, and
CT Bus information. It also has functions to
start/stop/quiesce boards.

Tables 2, 3, and 4 list the functions that would
be used to develop an application to support
PHS and redundant system slot features of the
System Release. The sample applications
included in the System Release — rgademo,
rssmanager and pfmanager — illustrate the use
of these APIs.

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

7

Application Note

API Description

NCM_IsHotSwapSystem Determine if the system has hot-swap capabilities.

NCM_GetHotSwapBoardCount Get the number of peripheral boards that currently are in
the hot-swap capable system.

NCM_GetValueEx Retrieve the value for a NCM database parameter.

NCM_SetValueEx Set a value to a NCM database parameter.

NCM_DeallocValue Release the memory allocated for the NCM database
parameter.

NCM_GetFamilyDeviceByAUID Retrieve the family type given the AUID of the board.

NCM_GetInstalledFamilies Retrieve the family types of all installed boards.

NCM_GetInstalledDevices Retrieve the list of installed boards.

NCM_StartDlgSrv Start the Intel® Dialogic® system service.

NCM_GetDlgSrvState Retrieve the state of the service.

NCM_StopDlgSrv Stop the Intel Dialogic system service.

NCM_StartBoard Start a single board.

NCM_StopBoard Stop a single board.

NCM_RemoveBoard Remove a board from the NCM database.

NCM_GetDialogicDir Get a pointer to the System Release install folder.

Table 2: NCM API functions

API Description

SRLGetAllPhysicalBoards Get a list of boards currently installed in the
system.

SRLGetVirtualBoardsOnPhysicalBoard Retrieve the number of virtual boards on a
physical board.

SRLGetSubDevicesOnVirtualBoard Retrieve the number of sub-devices on a virtual
board.

Application Note

8

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

Table 3: SRL API functions

API Description

DlgAdminConsumer::DlgAdminConsumer() Allows you to instantiate a consumer object.
Each DlgAdminConsumer object must be
associated with one event notification
channel.

DlgAdminConsumer::DisableFilters() Disables a DlgAdminConsumer object’s
array of filters.

DlgAdminConsumer::EnableFilters() Enables a DlgAdminConsumer object’s array
of filters.

DlgAdminConsumer::getChannelName() Returns the channel name that a
DlgAdminConsumer object monitors for
incoming events.

DlgAdminConsumer::getConsumerName() Returns the name of the DlgAdminConsumer
object. This name was associated with the
consumer object at time of instantiation.

DlgAdminConsumer:: StartListening() Allows the DlgAdminConsumer object to
begin monitoring its associated event
notification channel for incoming events.

CEventHandlerAdaptor::HandleEvent() A virtual callback function invoked by the
framework when an event is detected.

Table 4: Event Services API functions

Fault Management
Any malfunction of a hardware device is termed
as a fault. The Event Service has components
that are constantly monitoring the hardware
devices by either polling or looking for a
heartbeat signal. When the components detect
a loss of the heartbeat signal, a fault is
generated. Applications registered for the fault
are notified appropriately.

There are two kinds of faults on any Intel®

NetStructure™ board: Control Processor faults
and Signal Processor faults. These faults are
detected by the device driver via a mechanism
setup between the device drivers and the
individual kernel on each board (firmware). The

device driver notifies the registered OAM&P
services via function callbacks, which in-turn
report the event on the FAULT_CHANNEL. The
specific events that are reported are:

■ DLGC_EVT_CP_FAILURE — Generated
when a control processor failure occurs on
an Intel® NetStructure™ board.

■ DLGC_EVT_SP_FAILURE — Generated
when a signal processor failure occurs on an
Intel NetStructure board.

Detection and Recovery
Table 5 lists relevant events and recovery
mechanisms.

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

9

Application Note

Type Why Fault is Generated Actions Application Should Take

DLGC_EVT_CP_FAILURE When the control processor Close all devices that are open
that runs the firmware on a on that physical board.
board fails or asserts for any
reason. Restart POST on the board

and try to recover.

DLGC_EVT_SP_FAILURE If a physical board has voice Close all devices that are open
media capabilities, then there on that physical board.
are specialized DSPs that
could fail due to a variety of Restart the board and try to
reasons. If such a failure recover the channels on that
occurs, then this event is board.
reported to registered
applications.

Table 5: Types of faults

The flowchart in Figure 4 shows appropriate actions that are performed when faults occur on
a board.

Application Note

10

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

Welcome to
the ATSC

Voice Portal

What do you
want to do...

Welcome to
the

Voice Portal

What do you
want to do...

Welcome to
the

Voice Portal

What do you
want to do...

NCM_StopBoard

Running

Decision State

NCM_StartBoard

Stop Board
Run POST

and
Diagnostics

DLGC_EVT_CP_FAILURE
DLGC_EVT_SP_FAILURE

Before stopping the board,
you have to invoke the
xx_close() on all the
devices that are open on
that physical board.

DLGC_EVT_BLADE_STOPPED

DLGC_EVT_BLADE_STARTED

PASS

Legend

Remove Board

FAIL

FAIL

Process

Figure 4. Fault detection and recovery

Alarm Management
Alarms are disruptions that occur on both the
circuit and packet networks. On a circuit
network, an alarm could be the T-1/E-1 cable
being disconnected, a loss of frame signal, etc.
On the packet network, an alarm could be the
Ethernet cable being disconnected or a loss of
signal with a router, etc. The Event Service, in
collaboration with the Fault Detection Services,
detects such alarms. The alarms on the circuit
network are reported to the application via the
NETWORK_ALARM_CHANNEL. The alarms on
the packet (IP) network are reported to the
application via the ENET_ALARM_CHANNEL.

Most of these alarms are also reported to a call
control application via the Global Call alarm
notification services, if the application has
enabled such services. Appropriate Global Call
events are generated into the SRL event queue
and the application is notified. For example,
when there is a RED alarm on the circuit
connected to a T-1/E-1 span, a
GCEV_BLOCKED event is generated to the
application. When the alarm is cleared, a
GCEV_UNBLOCKED event is generated.

Clock Management
The CT Bus can be programmatically config-
ured for various setups. An OAM&P service, CT
Bus Broker, monitors all activity of the CT Bus.
When any failures occur the CT Bus broker,
using the facilities of the Event Service, reports
the events to registered applications on the
CLOCK_EVENT_CHANNEL.

Types of alarms on the CT Bus include:
■ DLGC_EVT_CT_A_LINESBAD — Occurs if

the signal on the CT Bus Line A fails.

■ DLGC_EVT_CT_B_LINESBAD — Occurs if
the signal on the CT Bus Line B fails.

■ DLGC_EVT_LOSS_MASTER_SOURCE_
INVALID — Signals that the source used by
the primary master board to drive the primary
line has failed. The primary master board can
use its own internal oscillator or a CT Bus
Network Reference line as its clock source.

■ DLGC_EVT_NETREF1_LINEBAD —
Indicates that the signal on the CT Bus
NetRef 1 line has failed.

■ DLGC_EVT_NETREF2_LINEBAD —
Indicates that the signal on the CT Bus
NetRef 2 line has failed.

Almost all of these events simply provide
information to the application. The application
does not need to take any action when one of
these events is observed, since the OAM&P
services handle the clock fallback and failover
mechanisms when something goes wrong.

Resource Management
Resource management for the Intel®

NetStructure™ board is handled by the
Standard Runtime Library (SRL) API and the
Event Service API using the Event Notification
Framework. Device enumeration and discovery
are done using the SRL and NCM APIs.

■ SRLGetVirtualBoardsOnPhysicalBoard()
— Used to retrieve the number of virtual
boards on a physical board identified by the
AUID.

■ SRLGetSubDevicesOnVirtualBoard() —
Used to retrieve the number of sub-devices
on a virtual board.

For example, suppose we have an Intel®

NetStructure™ DMN160TEC board in the
system. This physical PSTN network board has
16 T-1 or E-1 trunks, each represented by the
device name dtiBn, where n represents a num-
ber from 1 to 16. By invoking the SRL function,
SRLGetVirtualBoardsOnPhysicalBoard(), we
would get 16 and the device type would be
DTI. Using this information, we would build 16
device names (i.e., dtiB1, dtiB2, and so on,
through dtiB16). Also, by invoking the SRL
function, SRLGetSubDevicesOnVirtualBoard(),
we would learn how many timeslots exist on
each virtual board. If the DMN160TEC board
were configured for a T-1 ISDN protocol, we
would get 23 timeslots. If it were configured for
an E-1 ISDN protocol, we would get 30 as the
output from the function.

The hardware device detection is done using
the event notification framework and the Event
Service API. When a device is inserted on
removed from the system, the Plug-n-Play
Observer reports events to the Event Service
that would deliver the same on the
ADMIN_CHANNEL to registered applications.

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

11

Application Note

The various events that are reported include:
■ DLGC_EVT_BLADE_ABOUT_TO_REMOVE

— Generated when the Device >
Remove/Uninstall Device option is selected
in the Intel® Dialogic® Configuration Manager
(DCM).

■ DLGC_EVT_BLADE_ABOUTTOSTART —
Occurs when an individual board start
command has been issued (either through
the DCM’s Device > Start Device option or
programmatically with the NCM_StartBoard()
function).

■ DLGC_EVT_BLADE_ABOUTTOSTOP —
Occurs when an individual board stop
command has been issued (either through
the DCM Device > Stop Device option or
programmatically with the NCM_StopBoard()
function).

■ DLGC_EVT_BLADE_DETECTED —
Indicates that a newly-inserted board has
been detected by the System Release
software and its initial configuration informa-
tion has been stored in the NCM database.

■ DLGC_EVT_BLADE_REMOVED —
Generated when a board has been removed
from the system and its configuration
information has been deleted from the NCM
database.

■ DLGC_EVT_BLADE_START_FAILED —
Occurs if an individual board’s start
sequence has failed. (The board start
sequence can be initiated through DCM’s
Device > Start Device option or program-
matically with the NCM_StartBoard()
function).

■ DLGC_EVT_BLADE_STARTED —
Generated immediately after an individual
board has been successfully started. (The
board start can be initiated through DCM’s
Device > Start Device option or
programmatically with the NCM_StartBoard()
function).

■ DLGC_EVT_BLADE_STOPPED —
Generated immediately after an individual
board has been successfully stopped. (The
board stop can be initiated through DCM’s
Device > Stop Device option or
programmatically with the NCM_StopBoard()
function).

■ DLGC_EVT_SYSTEM_ABOUTTOSTART
— Occurs when a system start command
has been issued (either through the DCM’s
System > Start System option or
programmatically with the
NCM_StartDlgSrv() function).

■ DLGC_EVT_SYSTEM_ABOUTTOSTOP —
Occurs when a system stop command has
been issued (either through the DCM’s
System > Stop System option or
programmatically with the NCM_StopDlgSrv()
function).

■ DLGC_EVT_SYSTEM_STARTED —
Generated immediately after the system has
been successfully started. (The system start
can be initiated through DCM’s System >
Start System option or programmatically
with the NCM_StartDlgSrv() function).

■ DLGC_EVT_SYSTEM_STOPPED—
Generated immediately after the system has
been successfully stopped. (The system
stop can be initiated through DCM’s System
> Stop System option or programmatically
with the NCM_StopDlgSrv() function).

The state chart in Figure 5 illustrates the
various events listed above and shows a state
machine implemented in the PFMDemo
application included in the System Release.

Application Note

12

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

Figure 5: Event services state machine

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

13

Application Note

Peripheral Inserted

Decision State

NCM_StopBoard

This is the state in which the application is waiting to discover new
peripheral boards. When th DLGC_EVT_BLADE_PHYS_INSERTED
event is received by the Event Service, the application is notified.
At this time, the application makes itself ready to handle this new board.

Legend

Peripheral Detected

Peripheral About to Start

Peripheral Started

Peripheral About to Stop

DLGC_EVT_SYSTEM_ABOUTTOSTOP

DLGC_EVT_BLADE_STOPPED Peripheral Stopped Peripheral Removed

What do you
want to do...

Run POST and
Diagnostics

Peripheral Diagnose

DLGC_EVT_BLADE_DETECTED

NCM_StartBoard

FAIL

PASS

FAIL

When the application receives the
DLGC_EVT_BLADE_STARTED event from the Event
Service, it needs to perform the device discovery
actions by calling the SRL functions
SRLGetVirtualBoardsOnPhysicalBoard() to retrieve
the number of virtual boards on this physical board,
and SRLGetSubDevicesOnVirtualBoard() to retrieve
the number of sub-devices on each virtual board.
After getting the necessary information the
appropriate xx_open() functions need to be invoked.

DLGC_EVT_BLADE_PHYS_INSERTED

Executing POST on Boards
When a peripheral board is detected in the
system, it is recommended that you execute
POST on that device to ensure that the
hardware is good and functional. The System
Release provides POST utilities that can be
executed individually based on the type of

hardware and the family to which it belongs.
Figure 6 illustrates how this can be done. This
code snippet is part of the pfmanager sample
application of the System Release.

The Diagnose() function shows you how to
invoke the DM3 and IPT post utilities.

The RunProgram() function in Figure 7, shows a way of creating a Windows process, then waiting
for that process to complete execution.

NCMRetCode
CDevice::Diagnose ()
{
long lBoardId = 0;
char szCmd[256];
char szDir[128];
DWORD dwRc;
NCMRetCode ncmRet;
int iLen = 128;

ncmRet = NCM_GetDialogicDir (“DNASDKDIR”, &iLen, szDir);
if (ncmRet == NCM_SUCCESS)
{
if (!strcmp(m_Family.name,”DM3”))
{
//run dm3 post silently
sprintf (szCmd,”%s\\Dm3Post -b%d -s%d”, szDir,m_PCIBus,

m_PCISlot);
dwRc = RunProgram (szCmd);
switch (dwRc)
{
case 0:
case DM38BITOK:
case DM316BITOK:
case DTI168BITOK:
case DTI1616BITOK:
ncmRet = NCM_SUCCESS;
break;

default:
ncmRet = NCME_GENERAL;

}
}
else if (!strcmp(m_Family.name, “IPT”))
{
//run ipt post.

.

.

.
}
else
{
ncmRet = NCME_GENERAL;

}
}

return ncmRet;
}

Application Note

14

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

Figure 6. Executing POST

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

15

Application Note

DWORD

CDevice::RunProgram (char *lpCommandLine)
{
STARTUPINFO si;
PROCESS_INFORMATION pi;
DWORD retcode;

si.cb = sizeof (STARTUPINFO);
si.lpReserved = NULL;
si.lpDesktop = NULL;
si.lpTitle = NULL;
si.dwFlags = 0;
si.wShowWindow = SW_SHOW; //hide the program
si.cbReserved2 = 0;
si.lpReserved2 = NULL;

pi.hProcess = NULL;
pi.hThread = NULL;

if (!CreateProcess (NULL, lpCommandLine, NULL, NULL, false,
CREATE_NEW_PROCESS_GROUP, NULL, NULL, &si, &pi))

{
return -1;
}

switch (WaitForSingleObject (pi.hProcess, 120000))
{
case WAIT_ABANDONED:
case WAIT_TIMEOUT:
return -1;
break;

default:
GetExitCodeProcess (pi.hProcess, &retcode);
break;

}

if (pi.hProcess)
CloseHandle (pi.hProcess);

if (pi.hThread)
CloseHandle (pi.hThread);

return retcode;
}

Figure 7. Executing POST (continued)

CompactPCI Platforms
This section provides some details on the
CompactPCI systems that have been used to
validate the System Release software.

Note that the ZT5084 platform is fully
supported by the System Release software.
However, there is limited support for the
ZT5085 platform in the form of PHS. RSS is
not supported. Some specific configuration
steps need to be performed when setting up
the System Release software in the ZT5085
platform.

Intel® NetStructure™ ZT5084 10U High
Availability Platform
This HA CompactPCI platform provides a
carrier-grade computing system for
demanding, mission-critical applications. The
ZT5084 platform supports five-nines
(99.999%) availability with built-in redundancy
for active system components including
system-slot CPU boards, power supplies, and
alarming. These components are hot-
swappable to simplify replacement and
minimize service time.

The ZT5084 platform is ideal for telecom
applications requiring high system availability
(e.g., enhanced services, media gateways,
broadband access servers, or any critical
computing server platform destined for the
central office). The hardware-based failover
and simplified HA driver model shorten
development time for telecom equipment
designers, while redundant system-slot
architecture enables more efficient use of
expensive I/O resources. This CompactPCI
system has 12 slots available for peripheral
devices.

The ZT5550 High Availability Processor Board
is the only supported processor board for the
ZT5084 platform. This 6U, CompactPCI board
is designed for redundant processing configu-
rations where very high levels of system avail-
ability are required. Its architecture is tailored
for demanding applications such as those ser-
vicing the telecom network and the Internet.

The ZT5550 High Availability Processor Board
supports up to 12 CompactPCI peripheral
boards and, when used with a second ZT5550

board, can provide five-nines availability. It
features the Intel‚ Pentium® III processor
low-power module running at 500MHz, is
hot-swappable, and includes several on-board
peripherals and optional I/O expansion
features. The board occupies one or two slots,
depending on the configuration.

Intel® NetStructure™ ZT5085 12U
Redundant Host Packet Switched
Platform
The Intel® NetStructure™ ZT5085 12U
Redundant Host Packet Switched Platform
features a PICMG* 2.16-compatible mid-plane
supporting redundant-host architecture for
I/O-intensive applications. It is one of several
modular telecom building blocks from Intel,
providing OEM equipment designers with a
carrier-grade, standards based, HA computing
platform for demanding mission-critical
applications.

The Platform supports five-nines availability
with built-in redundancy for active system
components including Ethernet switches,
chassis management modules, power
supplies, and fan trays. Redundant chassis
management modules make it possible to
manage multiple SBCs and conduct chassis
diagnostics remotely for enhanced system
reliability. Ethernet signals are routed across
the mid-plane without the use of cables,
saving time in set-up, maintenance, and repair;
and minimizing the thermal challenges of
traditional cabling methods.

The Platform is designed to interoperate with
all members of the Intel® NetStructure™ family
of packet-switched products and with third-
party boards meeting the PICMG 2.16
specifications.

There are two supported processor boards for
the ZT5085 Platform, the Intel® NetStructure™
ZT5504 and Intel® NetStructure™ ZT5524
boards.

The ZT5504 processor board is a 2.16-
compliant processor board that offers
excellent value with an optimized feature set to
support a broad range of telecom and Internet
applications. Modular and standards-based,
the ZT5504 supports efficient time-to-market

Application Note

16

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

development. Completely validated with the
Intel® NetStructure™ family of packet switched
backplane (PSB) products, it is designed to be
interoperable with third-party 2.16-compliant
components. The board features a 1GHz,
low-power Pentium III processor with 512
Mbytes to 1 Gbyte ECC SDRAM.

The ZT5524 high-performance processor
board is a standards-based building block
designed for carrier-grade telecom and Internet
applications requiring exceptional processing
power and HA. The dual processor/redundant
host board is PICMG* 2.16-compliant and
offers configurable HA, I/O expansion, and
66MHz CompactPCI bridging features. A
generous set of on-board embedded features
and reliable, off-the-shelf architecture address
the integration and reliability requirements of
OEM systems builders. This board features a
single or dual 933MHz Pentium III processor
that supports symmetric multiprocessing in
single CompactPCI slot with a single 168-pin,
right-angle DIMM module socket. It supports
up to 1GB PC133 SDRAM memory.

Adding PHS support
Certain changes are required to support PHS in
an existing telephony application. The changes
can be summarized into the following steps:
1. Enumerate the peripheral device events to

which you want the application to listen. For
example, you may only want events on the
FAULT_CHANNEL and the ADMIN_
CHANNEL.

2. Register the application to receive the
peripheral device events via the Event
Service. This is done using the Event
Service APIs.

3. Build a state machine in your application
(similar to the one shown in Figure 5) to
properly handle the various events.

Adding Redundant System Slot
Support
An existing telephony application needs to
make certain changes to support the RSS
feature. These can be summarized as follows:
1. Identify the chassis vendor’s device driver

events. This should be available from the
vendor’s documentation. The RSS Manager
sample application provided with the
System Release illustrates the use of the
ZT5084 chassis and the ZT5550 SBC
boards. It registers for specific events from
the device driver provided by the chassis
vendor.

2. Register the application to receive the
events on the ADMIN_CHANNEL of the
Event Service. This will enable you to moni-
tor the activities of the Intel‚ NetStructure‘
boards.

3. Register the application to receive events
from the RSS HA framework provided by
the chassis vendor. This will enable the
application to monitor the activities of the
processor boards in the system.

4. Build a state machine into your application
that will perform appropriate actions when
the Event Service reports the board level
events.

Sample Applications
The System Release software contains sample
applications that demonstrate the use of the
HA features supported. There are four
applications:
1. RSS Manager — Demonstrates the use of

the RSS HA APIs provided by the ZT5550
system master board from Performance
Technologies. The application monitors the
activities on the SBC. When an active SBC
goes down (due to a friendly takeover,
hostile takeover, or critical fault), the
application is notified via a callback function
that indicates that a takeover occurred and
that the standby SBC is now the current
active host. At this time, the application
performs necessary peripheral operations
on the Intel NetStructure boards.

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

17

Application Note

2. Peripheral Fault Manager (PFM) —
Allows users to start/stop peripheral boards
installed in a system. It demonstrates the
use of Event Notification Framework events
retrieved by using the Event Service API.

3. Revenue Generating Application
(rgademo) — This call control application
works with the Peripheral Fault Manager
application and the RSS Manager
application. It also registers itself as a
consumer to the various events generated
by the Event Notification Framework. It
monitors activities on all peripheral devices
installed in the system. When a telephony
peripheral is inserted into the system,
appropriate events are detected by this
application. After the peripheral is initialized
and started, ISDN calls are made in a
loopback fashion for demonstration

purposes. Refer to the user’s guide for

more details on how to execute the
application and set up the boards.

4. HA Demo — This demonstration
application, provided by Performance
Technologies, illustrates the use of the RSS
HA APIs and the framework provided by
the ZT5550 system master board in the
ZT5084 platform.

The System Release contains a demo guide,
“High Availability for Windows Demo Guide,”
that describes these sample applications in
detail.

For More Information
Learn more about Intel Dialogic System
Release 6.0 CompactPCI for Windows 2000
and download the software at
http://www.intel.com/network/csp/
products/8326web.htm.

Application Note

18

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

http://www.intel.com/network/csp/

Appendix: Glossary
API Application programming interface

AUID Addressable unique identifier

DSP Digital signal processor

HA High availability

HSK Hot-Swap Kit

NCM Native configuration manager

OAM&P Operations, administration, maintenance, and provisioning

PHS Peripheral hot-swap

PICMG PCI Industrial Manufacturing Group

RSS Redundant system slot

SBC Single-board computer

High Availability Features in Intel® Dialogic® System Release 6.0 CompactPCI* for Windows*

19

Application Note

To learn more, visit our site on the World Wide Web at http://www.intel.com.

1515 Route Ten
Parsippany, NJ 07054
Phone: 1-973-993-3000

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel, Intel Dialogic, Intel NetStructure, Pentium, and the Intel logo are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration
may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on the performance of Intel products,
reference http://www.intel.com/procs/perf/limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

Printed in the USA Copyright © 2003 Intel Corporation All rights reserved. e Printed on recycled paper. 03/03 00-8549-001

http://www.intel.com
http://www.intel.com/procs/perf/limits.htm

