1) 理论基础:
总之,客户智能的目标是将企业所掌握的信息转换成竞争优势,提高企业决策能力、决策效率、决策准确性。为完成这一目标,客户智能必须具有实现数据分析到知识发现的算法、模型和过程,决策的主题具有广泛的普遍性。
1) 客户知识的生成(generation)
使用商业智能提供的OLAP分析工具、知识发现工具或两种工具的组合,发现存在于客户数据中的模式、规则、概念、规律的整个过程,叫客户知识的生成(图4)。相比较而言,知识发现工具的使用难度较大,包括确定任务、选择合适的挖掘工具(数据准备、挖掘算法、结果解释等),以及明确哪部分任务必须有营销专家参与,哪部分可以自动执行。
3.2. 系统架构
图6中,数据源层代表数据的收集,互动层是将分析、处理的结果直接作用于客户,可以归为操作层面;应用支持层是I-CRM的分析、处理层面,叫做分析层面;数据存储层为操作层和分析层面提供统一的客户视图,归为统一视图层面(图7)。三层的关系为:统一视图层面是操作层面和分析层面的数据支持;操作层面为统一视图层面收集数据,将分析层面的决策支持结果加以执行。分析层面为操作层面提供技术支持。
强大的决策分析功能和整合的客户信息是I-CRM科学、正确地实现客户智能的灵魂。决策分析的主题体现了客户智能理论基础所能涉及的所有内容,如利益率分析、忠诚度分析、消费行为分析等,这些分析的结果(客户知识)指导企业如何更有效地满足客户需求和期望,`同时,对企业来讲,不但要实现以产品为中心到以客户为中心的战略转变,而且应对客户的策略也必须做出转变,如采用有益于提高满意与忠诚的营销策略、注重客户生命周期价值而不是一两次交易的收益等。
4.总结
作者供稿 CTI论坛编辑