购买链接:https://item.jd.com/12479014.html
作者:王海良,李卓桓,林旭鸣 著
出版社:电子工业出版社
出版时间:2019-01-01
版次:1 页数:268
开本:16开 用纸:胶版纸
印次:1 ISBN:9787121349218 包装:平装
内容简介
出版社:电子工业出版社
出版时间:2019-01-01
版次:1 页数:268
开本:16开 用纸:胶版纸
印次:1 ISBN:9787121349218 包装:平装
内容简介
《智能问答与深度学习》面向在校学生或计算机软件从业人员,由浅入深地介绍了人工智能在文本任务中的应用。《智能问答与深度学习》不但介绍了自然语言处理、深度学习和机器阅读理解等基础知识,还简述了信息论、人工智能等的发展过程。
作者简介
王海良,Chatopera联合创始人、CEO,微软人工智能极有价值专家。毕业于北京邮电大学,加入IBM工作四年,先后工作于软件开发实验室和创新中心,从2016年开始工作于创业公司,三角兽AI算法工程师,呤呤英语AI产品负责人,负责智能对话系统研发。
李卓桓,PreAngel合伙人,Plug and Play投资合伙人。拥有25年编程经验,曾任优酷网首席科学家、叽歪网创始人,水木清华BBS站长,紫霞BBS站长。Conversational AI实践者,热爱滑雪、跑酷、滑雪伞等极限运动。
林旭鸣,北京邮电大学模式识别实验室研究生,目前的研究方向为深度学习、自然语言处理与机器阅读理解。本科期间曾获得国家奖学金,研究生期间多次在数据类竞赛中取得Top3的成绩。曾在百度、滴滴出行、微软等公司实习。
目录
1 概述1
1.1 智能问答:让机器更好地服务于人 1
1.2 问答系统类型介绍 2
1.2.1 基于事实的问答系统 3
1.2.2 基于常见问题集的问答系统 3
1.2.3 开放域的问答系统 4
1.3 使用本书附带的源码程序 4
1.3.1 安装依赖软件 4
1.3.2 下载源码 5
1.3.3 执行示例程序 5
1.3.4 联系我们 6
1.4 全书结构 6
2 机器学习基础 8
2.1 线性代数 8
2.1.1 标量、向量、矩阵和张量 8
2.1.2 矩阵运算 9
2.1.3 特殊类型的矩阵 10
2.1.4 线性相关 11
2.1.5 范数 12
2.2 概率论基础 12
2.2.1 随机变量 13
2.2.2 期望和方差 13
2.2.3 伯努利分布 14
2.2.4 二项分布 14
2.2.5 泊松分布 15
2.2.6 正态分布 15
2.2.7 条件概率、联合概率和全概率 17
2.2.8 先验概率与后验概率 18
2.2.9 边缘概率 18
2.2.10 贝叶斯公式 18
2.2.11 最大似然估计算法 19
2.2.12 线性回归模型 20
2.2.13 逻辑斯蒂回归模型 21
2.3 信息论基础 22
2.3.1 熵 23
2.3.2 联合熵和条件熵 23
2.3.3 相对熵与互信息 24
2.3.4 信道和信道容量 25
2.3.5 最大熵模型 26
2.3.6 信息论与机器学习 29
2.4 统计学习 29
2.4.1 输入空间、特征空间与输出空间 30
2.4.2 向量表示 30
2.4.3 数据集 31
2.4.4 从概率到函数 31
2.4.5 统计学习三要素 32
2.5 隐马尔可夫模型 33
2.5.1 随机过程和马尔可夫链 33
2.5.2 隐马尔可夫模型的定义 36
2.5.3 三个基本假设及适用场景 37
2.5.4 概率计算问题之直接计算 39
2.5.5 概率计算问题之前向算法 40
2.5.6 概率计算问题之后向算法 42
2.5.7 预测问题之维特比算法 45
2.5.8 学习问题之Baum-Welch算法 48
2.6 条件随机场模型 52
2.6.1 超越HMM 52
2.6.2 项目实践 55
2.7 总结 59
3 自然语言处理基础 60
3.1 中文自动分词 60
3.1.1 有向无环图 61
3.1.2 最大匹配算法 63
3.1.3 算法评测 69
3.1.4 由字构词的方法 72
3.2 词性标注 77
3.2.1 词性标注规范 77
3.2.2 隐马尔可夫模型词性标注 79
3.3 命名实体识别 81
3.4 上下文无关文法 82
3.4.1 原理介绍 83
3.4.2 算法浅析 83
3.5 依存关系分析 84
3.5.1 算法浅析 85
3.5.2 项目实践 92
3.5.3 小结 94
3.6 信息检索系统 95
3.6.1 什么是信息检索系统 95
3.6.2 衡量信息检索系统的关键指标 95
3.6.3 理解非结构化数据 97
3.6.4 倒排索引 98
3.6.5 处理查询 100
3.6.6 项目实践 102
3.6.7 Elasticsearch 103
3.6.8 小结 112
3.7 问答语料 113
3.7.1 WikiQA 113
3.7.2 中文版保险行业语料库Insurance QA 113
3.8 总结 115
4 深度学习初步 116
4.1 深度学习简史 116
4.1.1 感知机 116
4.1.2 寒冬和复苏 117
4.1.3 走出实验室 118
4.1.4 寒冬再临 119
4.1.5 走向大规模实际应用 119
4.2 基本架构 120
4.2.1 神经元 121
4.2.2 输入层、隐藏层和输出层 122
4.2.3 标准符号 123
4.3 神经网络是如何学习的 124
4.3.1 梯度下降 124
4.3.2 反向传播理论 127
4.3.3 神经网络全连接层的实现 130
4.3.4 使用简单神经网络实现问答任务 131
4.4 调整神经网络超参数 136
4.4.1 超参数 136
4.4.2 参考建议 137
4.5 卷积神经网络与池化 138
4.5.1 简介 138
4.5.2 卷积层的前向传播 139
4.5.3 池化层的前向传播 141
4.5.4 卷积层的实现 141
4.5.5 池化层的实现 145
4.5.6 使用卷积神经网络实现问答任务 148
4.6 循环神经网络及其变种 149
4.6.1 简介 149
4.6.2 循环神经网络 149
4.6.3 长短期记忆单元和门控循环单元 153
4.6.4 循环神经网络的实现 156
4.6.5 使用循环神经网络实现问答任务 159
4.7 简易神经网络工具包 160
5 词向量实现及应用 161
5.1 语言模型 161
5.1.1 评测 162
5.1.2 ARPA格式介绍 162
5.1.3 项目实践 163
5.2 One-hot表示法 164
5.3 词袋模型 165
5.4 NNLM和RNNLM 165
5.5 word2vec 168
5.5.1 C-BOW的原理 169
5.5.2 Skip-gram的原理 172
5.5.3 计算效率优化 174
5.5.4 项目实践 179
5.6 GloVe 189
5.6.1 GloVe的原理 189
5.6.2 GloVe与word2vec的区别和联系 191
5.6.3 项目实践 193
5.7 fastText 198
5.7.1 fastText的原理 198
5.7.2 fastText与word2vec的区别和联系 200
5.7.3 项目实践 201
5.8 中文近义词工具包 204
5.8.1 安装 205
5.8.2 接口 205
5.9 总结 205
6 社区问答中的QA匹配 206
6.1 社区问答任务简介 206
6.2 孪生网络模型 207
6.3 QACNN模型 207
6.3.1 模型构建 207
6.3.2 实验结果 214
6.4 Decomposable Attention模型 214
6.4.1 模型介绍 214
6.4.2 模型构建 216
6.5 多比较方式的比较–集成模型 216
6.5.1 模型介绍 216
6.5.2 模型构建 218
6.6 BiMPM模型 219
6.6.1 模型介绍 219
6.6.2 模型构建 221
7 机器阅读理解 222
7.1 完型填空型机器阅读理解任务 222
7.1.1 CNN/Daily Mail数据集 222
7.1.2 Children’s Book Test(CBT)数据集 223
7.1.3 GA Reader模型 226
7.1.4 SA Reader模型 227
7.1.5 AoA Reader模型 228
7.2 答案抽取型机器阅读理解任务 230
7.2.1 SQuAD数据集 231
7.2.2 MS MARCO数据集 232
7.2.3 TriviaQA数据集 234
7.2.4 DuReader数据集 235
7.2.5 BiDAF模型 235
7.2.6 R-Net模型 237
7.2.7 S-Net模型 240
7.3 答案选择型机器阅读理解任务 243
7.4 展望 245
参考文献 246
➤