您当前的位置是:  首页 > 资讯 > 文章精选 >
 首页 > 资讯 > 文章精选 >

CSDN专访杨植麟:“人机耦合”将是对话语义应用的新趋势

2020-04-20 10:13:47   作者:   来源:CTI论坛   评论:0  点击:



  
  受访者|杨植麟,循环智能联合创始人
  记者|徐威龙,编辑|郭芮
  出品|CSDN(ID:CSDNnews)
  「AI技术生态论」人物访谈栏目是CSDN发起的百万人学AI倡议下的重要组成部分。通过对AI生态顶级大咖、创业者、行业KOL的访谈,反映其对于行业的思考、未来趋势的判断、技术的实践,以及成长的经历。本文为该系列访谈的第12期,通过和循环智能联合创始人杨植麟的访谈,本文详细解读了XLNet模型等自然语言技术以及对话数据的应用场景等内容。
  近年来,由于面向大规模用户的音频、视频、图像等业务急剧增长,全球数据量呈现出爆发式的增长,“数据石油”也为无数的科技公司提供了“覆手为云”的发展契机。数据预测,到2020年全球的数据量将到达40ZB,车联网、智能制造、智慧能源、无线医疗、无线家庭娱乐、无人机等新型应用都将创造出新的数据维度。技术换代下,伴随着数据海啸而来的“淘金热”也居高不下。
  事实证明,数据带来的机会是极为庞大的,但目前人们还未能彻底挖掘出数据资产的全部价值。在过去,对话数据的“含金量”就一直被严重忽视了。
  随着自然语言处理技术的不断发展,时下的对话数据价值正在逐渐被唤醒,不同领域的最佳行业实践和实际效果都在逐步提升——而那些富有远见的企业,已经开始重视对话数据的价值了,但是他们之中的很多人仍缺乏利用这些数据产生业务价值的最佳实践。循环智能则正是基于此出发点,填补了这一技术空缺。
  基于原创的XLNet模型、Transformer-XL模型等自然语言处理底层技术,循环智能打造了领先的AI技术矩阵。“我们做的事情主要就是:从销售过程产生的对话数据中,包括跟企业的IM聊天、微信聊天、电话销售沟通,进行文本的洞察,实现决策层面的赋能,最终提升销售的转化率。”针对不同行业的具体需求,实现不同的对话数据应用场景落地。在本文中,CSDN采访了循环智能联合创始人杨植麟,其将从对话数据的应用场景出发,为我们全面解析XLNet模型原理、核心技术、当前NLP的发展以及AI人才成长路径等内容。
  在深度学习和自然语言处理领域,杨植麟颇有建树。作为第一作者,其与卡内基梅隆大学、Google Brain团队联合推出NLP领域热门的国际前沿预训练XLNet模型,在20个标准任务上超过了曾经保持最优性能记录的Google BERT模型,并在18个标准任务上取得历史最好结果,更被称为“BERT之后的重要进展”。
△杨植麟与两位导师Ruslan Salakhutdinov(苹果AI研究负责人,右)、William Cohen(谷歌Principal Scientist,左)合影
  在北京智源人工智能研究院公布的2019年度“智源青年科学家”名单中,他还是最年轻的、也是唯一的“90后”。
  分析对话语义,挖掘数据价值
  发挥数据价值已成为大多企业的共识,在这其中,很多企业出于提升服务水平和效率、保存企业数据资产的原因,存储了大量销售与客户、客服与客户沟通的录音、文本记录。如何从对话数据中找到对企业有用的信息、挖掘出客户所表达内容中隐含的潜在产品需求——则是循环智能的技术初衷所在。
  他表示,目前具体有四个场景:第一,使用对话数据,做高意向销售线索的挖掘、排序和打分,