对于在包交换网络上传输E1业务,减小延时和时钟提取是主要问题。二者与收到E1包的延时抖动密切相关,而E1包抖动主要取决于在交换机中的存储转发所造成的延时。以下分析只考虑E1包的这种延时。
在接收端,E1包经由交换芯片的MII接口输出,在FPGA中将E1数据取出、缓存,再做并串变换、HDB3编码,送到变压器输出。缓存为吸收包抖动而设置,越大越能容纳大的抖动。但是缓存的增大会线性地增大语音延时。所以应该在容纳包抖动的情况下尽量减小缓存。如果是一个不具有优先级的网络,那么在E1包到达交换机时,可能有多个数据包阻塞在E1包之前等待发送,这将使E2包的延时比没有阻塞时增大了。
E1包前面所有包总长度/100Mbps这个值是没有上限的,在网络负载较重时会使E1包产生很大的抖动甚至被丢弃。这种情况的后果,一是因为要加大收端缓冲区(如果缓冲区不够大可能会因为长时间收不到数据而发生读空导致错误)而导致E1端延时增大,二是给收端定时恢复造成了很大困难。而在优先发送E1包的网络中,当E1包到达一个交换机时,延时是可以预测的——由存储-转发导致的延时分为三部分:
①E1包自身的存储导致的延时,约为32byte×N×8bit/byte/100Mbps=N×0.00256ms
②低优先级队列中当前正在发送的数据包造成的延时,最大为(以太网最大包长为1518字节)1518byte×8bit/byte/100Mbps 0.12ms;
③高优先级队列中排在该E1包之前的来自其它端口的E1包导致的延时,设该网络中共有K对端口发送E1。由于网络中E1业务只占少数,所以K值一般较小。那么最多有(K-1)个E1包阻塞在该E1包之前,所以造成的最大延时为K-1×①=K-1×N×0.00256ms。
最坏的情况是,一个E1包每经过一个交换机就恰好有一个1518字节的数据包刚开始发送,并且在高优先级队列中还有K-1个E1包在等待。于是该E1包经过M个交换机后总的存储-转发延时为:
delay=M×(①+②最大+③最大)=M×(K×N×0.00256ms+0.12ms)

这就是收端E1包的最大延时。在M不太大的情况下,这样的延时和抖动是可以接受的。图4是对上述网络的仿真结果,取M=4,K=1,N=4,网络背景流量50mBps。根据上述估算,可知:
delay=(4×0.00256ms+0.12ms)×4≈0.52ms。
从仿真结果看,在有VLAN的情况下结果与预先的估算吻合,而在没有VLAN的情况下E1包的端延时显著增大。
为了保证实时E1业务的质量,除了要在网络中尽可能减小E1包延时外,还要保证在网关处对串行E1码流进行正确的封装和复原。这部分功能由适配电路完成。为测试这一功能,采用百兆点对点传输一路E1,设定E1传输码型为HDB3码,频偏±50ppm,N取4即E1数据区为128字节。在这种情况下(气温、湿度、气压均为正常条件)测得:①发出的E1包全部通过交换机;②收端还原出的HDB3 E1数据72h无误码;③E1输出抖动在G.823的抖动/漂移容限值模板之下。这表明适配电路正确完成了E1的发包、收包、定时恢复等功能。
本文分析了分组语音的技术背景和在包网络上仿真E1的应用前景,提出了一种在VLAN上分优先级传送语音业务E1和数据业务的方案。网络仿真结果显示该方案可以利用现有硬件实现有QoS保证的分组E1业务;相关产品的适配电路已完成设计和调试。
电子技术应用